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INTRODUCTIO N

The phenomenon of the scattering and stopping of high
speed atomic particles in passing through matter and

the accompanying ionization and radiation effects have, a s
is well known, been one of the most important sources of
information regarding the constitution of atoms. Ever sinc e
the pioneering work of THOMSON and RUTHERFORD, the ana-
lysis of the penetration phenomena has been in continual
progress and has, in particular, offered many important test s
of the gradually refined methods of atomic mechanics. In
the course of this development, the topic has been much
discussed within the group working at the Institute for
Theoretical Physics in Copenhagen and, in this connection ,
commemoration is above all due the stimulation of E . J .
WILLIAMS, whose premature death has been so deplorable
a loss. Already about ten years ago, plans were laid for a
general treatment of the problem by WILLIAMS and the
writer but, due to the isolation brought about by the war ,
these plans eventually had to be abandoned .

In recent years, the subject has acquired renewed interes t
by the discovery that heavy atomic nuclei, in the so-calle d
fission process, may break up into two fragments of compar-
able mass and charge ejected with kinetic energies of the
order of 100 MeV. This phenomenon has provided the pos-
sibility of studying the penetration through matter of high
speed particles with masses and charges many times large r
than those of the particles previously accessible to such
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investigations. Because of these properties of the fission
fragments, several features of only minor consequence i n
the behaviour of lighter particles are here of determinin g
influence on the whole phenomenon . On these problems a
number of experimental and theoretical investigations hav e
been published and, as previously announced, a more
comprehensive treatment was prepared by the writer already
in 1942. The postponement of the publication, due to cir-
cumstances, has, however, offered the opportunity of takin g
into account important results of more recent researches in
this field .

Following the original plan, the subject is treated in
a broad manner and emphasis is laid on points illustrativ e
of the more general principles especially regarding the scope
of the methods applied . For this reason, many mathematical
details which have been thoroughly investigated by other
workers have been referred to in a somewhat cursory way
and reference to various points of less direct relation to th e
'Hain subject has been printed in smaller type . At several
places, only a qualitative treatment has been given whic h
obviously may require further elaboration . As regards many
of the problems, readers may find fuller information i n
the admirable account of BETHE and LIVINGSTON (1937 )

and also in a forthcoming monograph by Dr . R. L . PLATZ -

MAN, who has kindly shown me those instalments whic h
have already been completed .

At the conclusion of the present work, the writer wishe s
to acknowledge his debt to many of the present and earlie r
collaborators at the Institute for numerous illuminating
discussions . His thanks are especially due Dr . Stefan RozEN -
TAL, M.Sc . Aage BOHR and M.Sc . Børge MADSEN for valuable
help in preparing the manuscript and the illustrating figures .
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CHAPTER 1

Scattering of Charged Particle s
in Atomic Fields .

§ 1 .1 . Coulomb Interaction in Classical Mechanics .

For the treatment of the interaction of an atomic particl e
with the matter through which it penetrates, the problem
of the collision between two point charges is of primar y
importance . Although a closer consideration shows that many
penetration phenomena depend essentially on the force s
acting between the individual constituents of the atoms and
may even be influenced by the interaction of neighbouring
atoms in the stopping material, we shall, therefore, first
consider the . simple Coulomb interaction in some detail .
In this connection, we shall in the present paragraph re -
call the well-known treatment of the problem by classica l
methods and, apart from references at certain points t o
modifications brought about by relativity theory, we shall ,
for simplicity, in general assume the relative velocities of th e
particles to he small compared with the velocity of light .
In following paragraphs, we shall proceed to the implications
of quantum mechanics and shall especially discuss th e
limitations imposed on the application of orbital pictures .

In ordinary mechanics, the problem of a collision be-
tween two particles attracting or repelling each other wit h
a force inversely proportional to the square of the distanc e
has a particularly simple solution . In the system of reference
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where the centre of gravity is at rest, the particles will, as
is well known, move in hyperbolic orbits with this centr e
as common focus. By introducing relative coordinates, th e
problem is even simplified to that of the motion of a
particle with the so-called reduced mas s

m = ml
m2,

°

 

ln i fm2

in a fixed radial field with a potentia l

P (r) _
ele 2
r

In these expressions m l , n1 2 and e l , e 2 denote the masses
and charges of the colliding particles, while r represents
their distance apart .

Except for scale, the relative orbit is similar to th e
orbital motions of the particles round the centre of gravity
and, denoting the angle between the asymptotes of th e
hyperbola, the so-called relative deflection angle, by 0, w e
get by a straightforward calculation (cf., for instance ,
Th oMsoN 1906, p . 376)

0

 

b
tg 2 = 2p ,

where p is the "impact parameter", defined as the distanc e
at which the particles would pass each other if no force s
acted between them, and

2~ e i e 2 l

m° v2

is a length depending on the relative velocity v and which,
in case of repelling particles, just represents the minimum
distance of approach in a head-on collision . For attractiv e

§ 1 .1 .
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as well as for repulsive forces, D . > 2 corresponds top < 2
and the cross-section for backward scattering in the relativ e

motion is, therefore, b2 . For this reason, b will in the

following be referred to as the "collision diameter " .
From the motion in the centre of gravity system, th e

actual velocities of the particles can be simply obtained b y
superposing the uniform velocity v~ of the mass centre .
In ordinary penetration phenomena, where the velocity o f
the incident particle, in the following referred to as particle 1 ,
is very large compared with the thermal velocities of the
atoms in the matter, the particle which is hit (particle 2 )
may often be considered initially at rest, and we have ,
therefore ,

For this case, Fig . 1 illustrates the determination of th e
velocities vl and v 2 of the particles after a collision of relativ e
deflection angle z9 .

Fig . 1 .

In the applications, we are most directly concerned with
the deflection angles 99 and p of the particles and with the

v~ = v• -
ni l

m l --ni2
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energy transfer in the collision . From the figure it is seen ,
by means of (1 .1 .5), that

(v - v,) sin 0

 

m2 sin ~
tg Ø

 

v~ -~- (v vc ) cos 0

 

m 1 -{- n1 2 cos 0 '

 

(1 .1 .6)

while for yi we get simply

When o9 varies from 0 to v, the angle y will thus decreas e

from 2
to 0 . The relationship between q9 and 09, however ,

will depend on the mass-ratio . If m 1 < m 2 , the angle cp will
increase steadily with t from 0 to n, while for m 1 > int it
is seen that 9) passes through a maximum value smaller

than 2 . In the special case where the masses are equal, w e

§ 1 .1 .

have simply (p = -2 .

Since, further, v 2 = 2 ve sin 2 , we get from .(1 .1 .5) for

the energy T transferred to particle 2 during the collisio n

T = 2 m2 v2
2 2

(m + m2)2
U2 Sln 2 2 = Tm sin2 2 ,

where Tm represents the maximum energy transfer ,

 

m 2

 

4 m 1 m 2
Tm = 2 v2

 

m

 

E

 

)2 '

 

(1 .1 .9)
111 2

 

( 1 + m2

m 0 being given by (1 .1 .1) and E representing the kinetic

energy, E = 2 miv2, of the incident particle . In case

mi = m 2i we have, of course, Tm = E, while T. («E if
mi is either very large or very small compared with m2 .

Introducing for 0 the formula (1 .1 .3), one finds, by means
of (1 .1 .4),
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2 e
i

e2

 

1
T --

 

2ITU

 

b 2

 

(1 .1 .10)
P- +4

as expressed in terms of the impact parameter .
In distant collisions where p »» b and where, con-

sequently, according to (1 .1 .3), the relative deflection

angle is very small, and approximately equal to b , the
P

two-body problem becomes especially simple . In particular ,
as is seen from (1 .1 .7), the struck particle will be set in
motion practically perpendicular to the direction of th e
incident particle . This result also immediately follows fro m
a consideration of the force exerted on particle 2 during a
distant collision, in which the motion of particle 1 may b e
regarded as approximately undisturbed . It is true that the
displacement of the struck particle parallel to the directio n
of the incident particle would become infinite for a pure
two-body collision, but such displacements are seen, fo r
symmetry reasons, not to affect the resultant momentum
and energy transfer .

For the total momentum transfer, M, we thus get for
distant collisions, by neglecting the displacement of th e
struck particle during the encounter° ,

/ I
ele' Ip
 dt = 21e ie 2 ~

(P2 +
U2t2)°l'

 

pU
lll (1 .1 .11)

from which follows

M 2 ti 2 e 21 e 2 1T 2 m2 .
1n2v2

p2

t) The notation ti is used when two quantities are asymptoticall y
equal, while two quantities which are merely of the same order of mag -

nitude will be connected by the symbol

(1 .1 .12)
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§ 1 .1 .

just corresponding to formula (1 .1 .10) for p »» b or

T «T,: .
The displacement q of the struck particle in the directio n

perpendicular to the path of the incident particle may, as
regards order of magnitude, be simply estimated from the
momentum transfer and the effective duration of the col-
lision. Since the main part of the interaction takes place
within a time interval of about 2p/v, we find from (1 .1 .4)
and (1 .1 .11) for this displacement

M2p

 

21 e1e21- b n'a ,q

 

nt ., u

 

m2 U2

 

m2

an estimate which shows that, in distant collisions, q is
small compared with p and, to a first approximation, in -
dependent of the impact parameter .

At the same time it is, of course, the small-variation ,
due to this displacement, of the forces exerted by particl e
2 on particle 1 which is the origin of the loss of kineti c
energy of the incident particle during the collision . In fact ,
the change in the component of this force directed against

the motion of the particle is approximately e1 3- q and,
P

acting through a distance comparable with p, it causes an
energy loss just corresponding to (1 .1 .12) . In the followin g
chapters, we shall make illustrative use of these simpl e
considerations .

In relativity theory, a rigorous treatment of the collision s
between charged particles presents in general a highly complicate d
problem. In the particular case where one of the particles is ver y
much heavier than the other, the problem has been treated wit h
neglect of radiative forces by DARWIN (1913), who showed tha t
for impact parameters smaller than a certain critical value which ,
for velocities about half that of light is approximately equal t o
b, a collision between charges of opposite sign should even resul t

(1 .1 .13)
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in a coalescence of the charges . Apart from such aspects of the
problem, which appear essentially different in quantum theory ,
it is, of course, necessary also to take into account that th e
relationships between energy and momentum transfer and angular
deflections may in relativistic mechanics deviate considerably
from those given above . A survey of such relationships to b e
applied in the examination of tracks of high speed particles has
recently been given by BLATON (1948) .

In distant collisions where the velocity of the struck particle
remains small compared with the light velocity c, it can be easil y
shown that the asymptotic expressions (1 .1 .11) and (1 .1 .12) for
M and T will be valid also in the relativistic case. In fact, the
field of the incident particle will simply be contracted in th e

direction of its motion in the ratio i = V 1- v' and, asc2
regards the transfer of momentum, the ensuing shortening of
the duration of the impact will be just compensated by a cor-
responding increase in the intensity of the force during the col-
lision . On the other hand, the displacement q of the struck particle
may be considerably smaller than given by (1 .1 .13) . An analysi s
of the energy balance is in this case somewhat more intricate ,
since it is necessary to take into account the retardation of the
reactive forces (cf . A. Bonn 1948) .

§ 1 .2. Statistics of Collisions . Rutherford Scattering Law .

In classical mechanics, the differential cross-section d a
for collisions with impact parameters between p an d
p + dp is, of course, 2 npdp. Introducing, by means of

(1 .1 .3), the deflection angle in relative motion, we thus ge t

2
da = 24- cos

2
cosec3

2
dV .

 

(1 .2 .1)

Since the corresponding solid angle is given by da) =

2 .r sin

 

we have, from (1 .1 .4) ,

/

 

\2
da = R (z9) duw = j 2 ~eÛ 2 I cosec4

2
dcu,

 

(1 .2 .2)
\

 

o /
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an expression well known fromRUTHERFORD ' S fundamenta l
researches (1911) on the scattering of a-rays .

Formula (1 .2 .2) can be directly applied to the larg e
angle scattering of a-rays by heavy nuclei, where ii is ap-
proximately equal to the actual deflection angle 99 but, when
considering particles of comparable masses, it is necessary ,
for comparison with experiments, to introduce cp by mean s
of expression (1-.1 .6), which gives in general a somewhat
more complicated scattering law (DARWIN 1914). In distant
collisions, however, where the angle 19 . is small, (1 .2.1)
reduces to the simple expressio n

da ~ 2 n ( 2eÛZ)2 ~a~

 

(1 .2.3)
o

and, since (1 .1 .6) gives

 

m2
6, we have

m l +rn 2

§ 1 .2 .

ddx 2sc( 2e 1 e 2 ) 2 d99
3ml a 2 ~ . (1 .2 .4)

by means of (1 .1 .1) .

For velocities approaching that of light, formula (1 .2 .2 )
requires modifications especially for large angles while, on the
lines of the argumentation in § 1 .1, it is seen that, in distan t
collisions, relativity corrections simply amount to a replacemen t
in (1 .2.4) of the rest mass m l by the effective mass ml y .

In quantum mechanics, the whole idea of orbits and ,
particularly, of impact parameters has only a restricte d
validity, but nevertheless the notion of cross-section may
be conveniently applied . Even if it cannot be simply pictured
as a target area, it may be defined, in an equivalent manner ,
by the number of collisions with specified results takin g
place per unit time, divided by the current density of the
incident beam of particles . In general, of course, cross-
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sections deduced. in quantum mechanics may have essen-
tially different values from those obtained from classica l
mechanical calculations, but, in the special case of the
scattering by a fixed Coulomb field, it is a well-know n
result of the wave-mechanical analysis that, apart fro m
relativity modifications, formula (1 .2 .2) holds quite gener -
ally for the statistical distribution of the relative deflectio n
angles (GORDON 1928) .

It may be noted that, in quantum mechanics, we meet with
special features when considering a collision between identica l
particles where peculiar exchange phenomena occur, connecte d
with the impossibility of distinguishing between the individua l
particles during their interaction . As shown by MOTT (1930), the
Rutherford law must in such cases be replaced by the expressio n

da = ( m)9 (cosec' Z + sec° 2 +

+ 21] cosec2 2 sec$
2

cos
j 2

E

by
logtg 2 J) d w

where e and m are the charge and mass of the particles, and
where hh is PLANCK' S constant divided by 27r. The upper and
lower factors in the square brackets refer to particles, of spin 0
and 2 obeying Bose-Einstein and Fermi-Dirac statistics, respect-
ively. While the two first terms in (1 .2 .5) simply correspond
to the probability, according to the Rutherford law, of either
particle being scattered into the specified angular region do), the
third term represents the exchange effect, which_ is a purel y
quantum-mechanical phenomenon .

Due to the circumstance that, disregarding relativit y
refinements and specific exchange effects, the statistical laws
governing two-body collisions are the same in quantum
mechanics as in classical mechanics ; several results in pene-
tration theory, obtained by classical mechanical methods ,
are valid far beyond the scope of orbital pictures . Essential
features of the scattering and stopping problems, however ,

(1 .2 .5)
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are determined by the fact that the matter penetrated does
not consist of free particles, but of atoms containing electron s
bound by nuclei. The interaction between the penetratin g
particle and the matter cannot, therefore, be accounted fo r
by simple two-body collisions . Not only will there be a
partial compensation of the forces exerted on the incident
particle but, also, the atomic binding forces may influenc e
the course of the collisions . In many problems it is, there -
fore, necessary to take into account certain screening effects ,
of static or dynamic character, the influence of which may
be essentially different in classical mechanics and in quan-
tum theory .

In the subsequent paragraphs of this chapter, we shall ,
therefore, attempt a comprehensive treatment of the variou s
aspects of the screening problems . We meet here with a
number of paradoxes, the elucidation of which offers il-
lustrative examples of the application of the ideas of in -
determinacy and complementarity in quantum theory .
These problems have been the subject of numerous dis-
cussions referred to in the Introduction and have been
interestingly expounded by various authors (BLOCH 1933 ,
WILLIAMS 1933 and, especially, WILLIAMS 1945) .

§ 1 .3 . Criterion for Application of Orbital Picture s
in Coulomb Scattering .

In order to make the trend of the argument as clear as
possible, we shall begin by examining the conditions for the
unambiguous use of orbital pictures in the simple case o f
the scattering of charged particles in a fixed Coulomb field .

§ 1 .3 .
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P

1 0
Fig . 2 .

In Fig. 2, let 0 represent the force centre and the full -
drawn curve the hyperbolic orbit to be expected from class-
ical mechanics for a particle with impact parameter p .
By D is indicated a suitably placed, fixed diaphragm wit h
a hole serving to secure an actual localization of the path
of the particle .

As is well known, the presence of such a diaphragm
will, according to quantum mechanics, cause a diffraction
indicated by dotted arrows in the .figure, and the problem
is now whether this diffraction will be small compared with
the deflection of the particle due to the field or whethe r
it will be so large that it will completely overshadow
any orbital deflection . In the former case, it is in fact pos-
sible to construct wave packets which, to a high degree o f
approximation, follow the classical orbits while, in the latte r
case, we must be prepared for proper quantum effect s
which evade any analysis in terms of ordinary mechanical
pictures .

For a circular hole of diameter d, the aperture of dif-
fraction will, as regards order of magnitude, be given by
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where

§ 1 .3 .

(1 .3 .2)

is the de Broglie wave-length divided by 2 n . For a sharpl y
limited hole, the problem of diffraction is somewhat com-
plicated but, if we assume that the hole is limited by partl y
permeable edges in such a way that the intensity of th e
penetrating beam at different distances from the centre of
the hole is given by a Gaussian law of error with a mean

square deviation i , we get (cf. MOTT and MASSEY 1933 ,

p. 6), for not too large diffraction angles, an angle dis-
tribution which is again Gaussian with a standard deviatio n
just represented by (1 .3 .1) .

Since, for small values of the deflection angles, we have ,
according to (1 .1 .3),

(1 .3 .3 )

we see from (1.3.1) that, provided b »» A, it is possible fo r
any given value of the impact parameter p to choose d smal l
compared with p and, at the same time, essentially to limi t
the diffraction to angles smaller than '1 . Under such cir-
cumstances we may, at any rate approximately, visualize an
orbit with a definite impact parameter . It is, of course ,
evident that the wave-length must be small compared with
the collision diameter if classical mechanics shall be at all
applicable to the calculation of the large deflection angle s
corresponding to small impact parameters, but the interes t
of the above considerations just lies in the proof that, for a

b
,
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Coulomb field, this condition is sufficient for the approxi-
mate applicability of the classical calculation also for th e
smaller angles, corresponding to large impact parameters ,
which are statistically more frequent and, therefore, o f
decisive importance for many phenomena .

As regards the accuracy obtainable under given circum-
stances by an ordinary mechanical analysis, it must b e
taken into account that the finite size of the hole in the
diaphragm implies an uncertainty in the fixation of th e
impact parameter, and the deflection angles to be expecte d
according to (1 .1 .3) will, therefore, be distributed aroun d
a mean value with a standard deviation 679 . By differ-

entiating

 

and

 

S

 

d
g (

 

)

 

putting p = 2 , we get thus

~ p 2

 

bd

 

d

 

2

 

2

b Asa measure of the latitude A6 in the deflection of th e

(1 .3 .4 )

particles due to the combined effects of the diaphragm and
the field, we may now take

d'O =1/(693) 2 + (8D) 2

 

(1 :3 .5)

and one thus finds, by means of (1 .3.1) and (1 .3.4) ,

dO. >

 

b
Vo'

 

(1 .3 .6)
for the degree of accuracy obtainable by a classical de-
scription of the phenomenon .

Introducing the notation

b_ (1 .3 .7)

Vidensk .Selsk .,Math .•fys. Medd. XVIII, 8.
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§ 1 .3 .

or, according to (1 .1.4) and (1 .3 .2),

2eie 2x= - U

we thus have

)>

 

(1 .3.9)

as the necessary and sufficient condition for the justificatio n

of the classical considerations leading to the Rutherford
formula (1 .2 .2) . For decreasing values of x, orbital picture s
gradually lose their applicability and, for values of x of
the same order of magnitude as unity or smaller, will
have lost all physical significance .

An illustrative example of the inadequacy of orbital pictures
is offered by the typical quantum-mechanical exchange effect s
in collisions between identical particles referred to in the former .
paragraph and where, according to formula (1 .2 .5), just for x 1
the scattering may for wide angular regions, according to th e
specific statistics, be essentially larger or smaller than would
follow from simple mechanics . The apparent paradox that even
for x »» 1 the differential cross-section does not conform wit h
the Rutherford law but, according to (1 .2 .5), oscillates rapidl y
with changing z9 round the classical value, finds its solution i n
the fact that any attempt, by means of a suitable set of dia-
phragms, to separate the orbits of the colliding particles and thereby
exclude exchange phenomena, will involve a diffraction which
would prevent any observation of the quantum-mechanical ano-
malies in the scattering law (cf. MOTT 1930) . In fact, it will b e
seen that the uncertainty in deflection angle, given by (1 .3.6 )
for x »» 1, exceeds the angular intervals over which the cross -
section (1 .2 .5) undergoes oscillations .

Similar considerations also cover the effects in collisio n
problems of such specific quantum-mechanical particle propertie s
as spin and magnetic moment which evade interpretation b y
classical pictures and which become of special significance when
the particle velocities approach that of light . In this connec-
tion, it is of interest that the criterion (1 .3.9) applies also in
relativity theory . In fact, the only modification in the above
simple analysis consists in the replacement of the rest mass by moy ,
which has no influence on the result since, according to (1 .3 .8) ,

(1 .3 .8)
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the value of x is independent of the mass. It may, however, b e
noted that the condition x »» 1 cannot, for v ti e, be realized ,
unless the charges e l and e 2 are considerably larger than the
elementary unit of electricity .

For the following discussion of the penetration phenomena
it is especially important that, unless condition (1 .3.9) is
fulfilled, it is impossible by means of classical pictures t o
draw any conclusion as regards the corrections to be ex-
pected in the Rutherford scattering law due to the deviation
of the actual field from a pure Coulomb field as a con-
sequence of screening effects .

§ 1 .4. Modification of Rutherford La w
in Screened Fields .

In order to examine the characteristic effects of a screen -
ing of the scattering field, we shall for the potential energ y
of the incident particle at distance r from the centre choose
the simple expression

r
PQ (r) = ele2 é « ,

r

where a is a constant length which we shall refer to as th e
"screening parameter ". A potential of this type covers, in
fact, most of the screening problems of interest for our dis-
cussion and, in particular, (1 .4.1) holds with high approxi-
mation for the electrostatic fields within atoms . The actual
values of a in the various cases will be more closely discussed
in the next chapter dealing with the applications of th e
present considerations to specific. penetration phenomena .

As we shall see, the character of the problem will depend
essentially on the ratio between a and the collision diamete r

2*
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b for unscreened fields, defined by (1 .1 .4), and it will, there-
fore, be convenient to introduce the abbreviation

(1 .4 .2)

Now, in many of the most important penetration phenomena ,
« 1, and in such cases, which will be especially con-

sidered in this paragraph, the Rutherford law will in general
be valid over a considerable angular region .

If condition (1 .3.9) is fulfilled, and orbital pictures can
be applied to collisions in a simple Coulomb field, the limit
for the Rutherford scattering is easily estimated . In fact, in
collisions with impact parameter p small compared with a ,
the deflection will occur practically only in the unscreened
part of the field and will, therefore, with a high degree of
accuracy, be given by (1 .1 .3) . Consequently, we shall expect
the scattering law (1 .2.2) to hold approximately for angle s
larger than the value aka obtained from (1 .1 .3) for p = a .
Since, for C « 1, this angle will be small, we get simply

Oa 'A,' C .

 

(1 .4 .3)

For greater values of p, the deflection angle will, due t o
the screening of the field, decrease far more rapidly tha n
corresponding to (1 .3.3) .

As follows from considerations like those in § 1 .3, this
latter circumstance may prevent the unambiguous use o f
orbital pictures for 0 « O , but, if (1 .3 :9) is fulfilled, thi s
limit will evidently not be reached before the scatterin g
distribution has become extremely rare in comparison with
(1 .2.2). For many purposes, we may, therefore, simply
neglect the scattering for angles smaller than Q and take

§ 1 .4 .

b
a
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this angle as the effective lower limit for the validity regio n
of the Rutherford distribution .

For velocities close to that of light, the scattering formul a
will, as already mentioned, demand modifications especially a s
regards the close collisions, but it is of interest to note that, as-
suming ~"a to be small, the relation (1 .4.3) will hold if only, i n
(1 .1 .4), mo is replaced by moy, implying, according to (1 .4 .2), a
decrease in the value of by a factor y .

If (1 .3 .9) is not fulfilled, the effect of the screening
presents us with a typical quantum-mechanical problem ,
the complete treatment of which depends on the solution
of the appropriate wave equation. Still, to the purpose of
the present discussion, it will be unnecessary to consider th e
exact solution but, as we shall see, we may confine our -
selves to the first step of the Born approximation method .
In fact, we shall be concerned only with a scattering effect s o
small that the plane wave representing the state of motion
of the incident particle will pass practically unaltered through
the field round the centre of force, and the diffraction can ,
therefore, in the usual simple way be described as a super-
position of wavelets originating from all space element s
round the-centre . It is true that such a procedure does not
converge for an unlimited Coulomb field, but this difficult y
disappears just for the problem of screened fields in whic h
we are interested .

For a field represented by (1 .4 .1), the simple method
concerned leads, for an angle of deflection in relative
coordinates, to the following -expression for the amplitud e
As of the scattered wave at a large distance e from the
centre (cf. MOTT 1930 a, p.25) :

As (0)
_ A i ele2

 

1
s

 

P 2mov 2

 

$~}

 

/ A 1 2 '

 

(1 .4.4)
sin

2 + 2a
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where A i and IC are the amplitude and the wave-length,
divided by 2 n, of the incident plane wave . As regards th e
statistical distribution of the deflection angles, we get ,
therefore,

\ 2
_'dw,

 

(1 .4.5)
2asui 2-1

where R (0) is defined by the Rutherford formula (1 .2 .2) .
As already indicated, the approximation procedur e

leading to (1 .4 .5) is justified only if the scattering is s o
small that the incident wave passes without appreciabl e
disturbance through the field of force . In order to examin e
how this condition depends on the charge and velocity o f
the incident particles, we may simply consider the tota l
cross-section

§ 1 .4 .

d a = R (D.)

a = 2
a2 2

1 I (2 a
A

)
(1 .4 .6)

obtained by integrating (1 .4.5) over all angles and intro-
ducing x from (1 .3 .7) . In fact, formula (1 .4.6) shows that, if

<0,

 

(1 .4.7)

a will, for all values of a, be small compared with ra 2,
representing the number of particles which per unit tim e
enter the unscreened part of the field . If (1 .4 .7) is fulfilled,
only a small fraction of these particles is, therefore, deflecte d
and the method leading to (1 .4 .5) will thus be valid .

As regards the relation between formula (1 .4.5) and a
simple Rutherford scattering, it is seen that only in the cas e
where a is large compared with A does there exist an angular
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region for which da conforms closely to the Rutherford law,
while, for a «X, we get a uniform scattering over all angles ,
as also follows directly from simple arguments . Further ,
we find that, for a »» A, the effective limit for the regio n
of the Rutherford scattering may be taken as

(1 .4 .8)

It is interesting to note that the estimates given by (1 .4 .3)
and (1 .4 .8) give the same result for x 1, in which case ,
strictly speaking, neither the application of classical orbita l
pictures nor the method of simplified wave diffraction i s
justifiable . Due to this remarkable fitting together, the tw o
mutually exclusive procedures will, for C « 1, practically
cover all possibilities .

A comparison of the actual angular scattering distributio n
with the Rutherford law for a constant small value of C
and for different values of x is given in Fig. 3, in which
the ratio $ between the differential cross-sections for screene d

and unscreened fields is plotted against log cosec 2 . The

curve Rå represents the case x »» 1, where is practicall y
equal to unity until, within a narrow region around 0 = Oa ,
it falls to a vanishingly small value. The case x « 1 is
represented by the curves R ' , T, and S . In curve Rä, w e
have again a region where is practically unity, limited b y
a region around = t , where it rapidly vanishes. Ac-
cording to (1 .4 .3) and (1 .4.8), the decline of R ' is displaced
relative to the decline of RQ by the amount log x . The
steepness of the slope of the curves in the figure corresponds
to C - 10-4 and the value of x for curve Rä is chosen t o
be about j/ C . Curve T, which corresponds to x C or
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a A, represents the transition state where the scattering
distribution for all angles begins to deviate essentially fro m
the Rutherford law. Finally, curve S represents the spher-
ically uniform angle distribution which occurs when n i s
still smaller and, therefore, a «« A .

It need hardly be stressed that the results represented i n
Fig. 3 cannot be interpreted by even a restricted referenc e
to orbital pictures . Thus, any attempt to attribute the dif-
ference between RQ and Rä to the obvious failure of such
pictures in accounting for collisions with an impact
parameter smaller than A will be entirely irrelevant . In fact,
this argument would imply a difference between the tw o
distributions for the large angle scattering, while the actua l
differences occur only in the limits of small angles . For
x «« 1, the scattering law is, in fact, determined by all part s
of the field in a manner completely foreign to any ordinary
mechanical analysis . In particular, it is interesting to note
that the central region of the field of dimensions comparabl e
with b which, on classical mechanics, is responsible for al l
large angle scattering will, for x (« 1, as seen from (1 .4.6) ,

§ 1 .4 .
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by putting a ti b, give rise to only a fraction of the order
x4 of the Rutherford scattering. Indeed, for a Coulomb

potential, only regions of the field of dimensions comparabl e
with or larger than A will contribute appreciably to th e
scattering effects .

Interesting illustrations of the characteristic features of th e
scattering problem for different values of x are offered by th e
exchange phenomena appearing in collisions between identica l
particles and referred to in previous paragraphs . The problem i s
especially simple for particles with spin zero, where the initia l
stage of the collision in relative co-ordinates is represented by
two scalar wave trains of equal amplitude and opposite direction,
and the phases of which coincide at the centre of the field . Now ,
for x «« 1, these waves will pass practically undisturbed throug h
the field and, in any direction, the scattered waves from eithe r
of the wave trains will evidently have the same phase as the
wavelets scattered front the centre . We shall, thus, expect th e
total scattering at an angle 0 to be given by the square of th e
sum of the amplitudes corresponding to the deflections 6 and
n - â of a single particle in a fixed field . This result is in accordanc e
with formula (1 .2 .5) for vanishing values of x, which is just the
quantity appearing in the last term of this formula . In case
x » 1, the waves will not be able to penetrate the field, but will ,
on the contrary, be rather sharply deflected at a distance from
the centre which, for angles of the order of y, is approximatel y
equal to the classical collision diameter b . For deflections through
exactly right angles, the two reflected waves will, of course, alway s
be in phase but, for small deviations e from this direction, a phas e
difference of the order e Å = ex will appear, giving -rise to the
steep maxima and minima in the scattered intensity exhibite d
by formula (1 .2 .5) .

Even in the problem of the scattering in a fixed field, anoma-
lies related to the value of x appear when the particle velocit y
approaches that of light . In fact, as referred to in § 1 .1, a classica l
relativistic treatment gives peculiar effects for impact parameter s
of the order of magnitude of b while, for x (( 1, no correspondin g
deviations from the Rutherford formula occur since, as mentione d
above, the central part of the field at distances smaller than A
has no significant influence on the scattering . In the latter case ,
the only correction, if we look apart from spin effects, consists
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in the replacement of mp by. mo y in the scattering law . According
to (1 .3.8), this correction does not affect the arguments leadin g
to (1 .4.7), but merely implies that in the estimate (1 .4.8) the
value of 4 is decreased by a factor y.

§ 1 .5. Problems of Excessive Screening.

In problems where C «« 1, representing the case of a
Coulomb field with minor screening, we find, as shown in
the preceding paragraph, in general a scattering which over a
considerable angular interval conforms with the Rutherford
law. If C is of the same order as or even larger than unity,
however, we must for all values of x expect an angula r
distribution which differs essentially from the scattering la w
in unscreened fields . In particular, the great frequency o f
small angle deflections will be far less pronounced and the
scattering law may often approach a spherically symmetrica l
angular distribution given b y

dQ =
4n da) '

corresponding to a total cross-section cr .
Also in such problems of excessive screening, the tw o

approximation methods of classical mechanics and of sim-
plified wave diffraction, respectively, apply with consider -
able accuracy to a large variety of problems, but these
methods do no longer cover all possibilities to the same
extent as for C «« 1 . In fact, for C $ 1, we must expect
the regions where such approximations are applicable to b e
separated by an intermediate region where more general
quantum-mechanical methods are required . The remarkabl e
simplicity which the problems of minor screening exhibit
originates in the circumstance that, only for a pure Coulomb
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field, the two in their physical interpretation incompatible ,
extreme approximation methods lead to the same statistica l
results for the collision effects .

To examine the conditions for the use of orbital picture s
for a scattering field of the type (1 .4 .1), we may apply a
procedure quite analogous to that used in § 1 .3. Since, in
the present case, the field intensity for all values of r varie s
essentially over a distance comparable with a, it is no t
sufficient that 1 « b, but it must obviously be demanded
that . « a . Still, even if this condition is fulfilled, it is only
over a limited angular region that the scattering can b e
accounted for by ordinary mechanics . In fact, in contras t
to the case of Coulomb scattering where, for x »» 1, orbita l
pictures are approximately applicable to all angles, it follows
from (1 .3 .1) that any attempt by a suitable diaphragm t o
define the impact parameter with a latitude smaller than a
will make it impossible to trace deflections smaller than

(1 .5 .2)

according to (1 .3 .7) and (1 .4.2) . In many problems of ex-
cessive screening, however, the large angle deflections pla y
a predominant part, as is the case when the simple scatterin g
formula (1 .5.1) applies. Under such circumstances, th e
estimate based on classical mechanics will be justified i f
'0* « 1 or, according to (1 .5 .2), if

x i> C,

 

(1 .5.3)

a criterion which, just for C > 1, is more restrictive than
(1 .3.9) .

A well-known example, where classical pictures have a larg e
region of applicability but where the breakdown of such methods
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for small deflection angles may still be significant for certain
purposes, is offered by the scattering from an impenetrable spher e
of radius e large compared with the wave-length A of the incident
particles or radiation. While classical mechanics, like geometrica l
optics, in this case leads to a uniform scattering over all angle s
with an effective cross-section ne 2 , a proper wave-mechanical
treatment discloses an additional scattering for angles comparabl e
with Ale . In fact, the scattering cross-section for the small angle s
alone equals the scattering as calculated with neglect of th e
diffraction, and the total cross-section is, therefore, 2ne 2 (MASSEY
and MOHR 1933 ; see also WERGELAND 1945) .

The contribution of this "shadow " effect may be very easil y
estimated from elementary considerations of ordinary optics (cf . ,
e . g ., DRUDE 1906, p . 207), according to which two supplementary
systems of diaphragms give identical diffraction patterns . By sub-
stituting for the sphere a diaphragm with a circular hole of radiu s
e, it is, thus, immediately seen that the intensity of the diffractio n
pattern which is now formed by the waves penetrating the hol e
corresponds, for A << e, to a cross-section of just ne 2 . . It may
be added that this simple argumentation at the same time show s
that the doubling of the cross-section is a phenomenon which
is independent of the geometrical shape of the scattering body .

It is of interest that, just in the case A > a, where orbita l
pictures fail completely, (1 .4.7) is no longer a necessary
condition for the use of the other extreme approximation
method, that of simplified wave diffraction . In fact, it follows
from (1 .4.6) that the cross-section will be smaller than rra2
if only x < A/2 a or, according to (1 .3 .7) and (1 .4.2), i f

§ 1 .5 .

«vC (1 .5 .4)

which, in the case of excessive screening where C' >j 1, is
essentially less restrictive than (1 .4 .7) .

While, in cases where (1 .5.4) is fulfilled, the differentia l
cross-section is given by the general formula (1 .4.5), it is ,
in the region (1 .5 .3) where classical mechanics applies, ofte n
convenient to compare the screened field with an nth power
potential
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kn
Pn (r) = n' (1 .5 .5)

In fact, at distance r from the centre, (1 .4.1) will, as seen
from a logarithmic differentiation, vary in a way cor -
responding to (1 .5.5) for

~n 
e 1 )n-1 .a= .1 I- and kn = ele2an - 1

 

(1 .5.6)a

While, for r « a, we have, of course, with high approxi-
mation a Coulomb field, the influence of the screening will ,
thus, at larger distances imply a field intensity correspondin g
to (1 .5 .5) for ever increasing values of. n .

In a number of applications, the part of the field aroun d
r = a will be decisive for the deflections and, in this region,
we have effectively n = 2 . For such a field, the ordinary
theory of central motion (cf ., e .g., TxoMSON 1906, p . 371 )
gives, for the deflection corresponding to an impact para-
meter p, the expression

~_ 7r (1-I- 2 k2 2 ) "_ i
\

 

mo°p

 

(1 .5 .7)

In the case of attractive forces, k 2 < 0, the value of ,, O
becomes infinite for p = pc given by

2 ~ k 2
Pzc- mv2

and, for p < pc , the relative motion consists of a spiral orbi t
which, through an infinite number of revolutions, ap-
proaches the centre . Of course,' there can be no questio n
of applying such calculations rigorously to all values of p ,
since the field will be of the inverse cube type only in th e
region around r = a .

(1 .5 .8)
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For small angles, we get from (1 .5 .7), by introducing

k 2 from (1 .5 .6) and applying (1 .1 .4) and (1 .4 .2) ,

7L

 

a279,~ 2eP2
giving

da 4e a2 •
dco

3

(1 .5 .9)

(1 .5 .10)

for the differential cross-section. It must, however, be re -
membered that such formulae do not apply to arbitrarily

small angles. In fact, for p »» a, the field will fall off mor e
rapidly than corresponding to n = 2 and, moreover, class-
ical mechanics can only, even in the case of x »» be
applied to deflections larger than 0* given by (1 .5 .2) .

It is of importance that (1 .5 .10) varies less rapidly wit h
0 than the Rutherford law and, in many applications, thi s
circumstance implies that the influence of the small de-
flections will be negligible . In such cases, one may, accordin g

to (1 .5 .1 and 1 .5 .7), reckon with a total effective cross-sectio n

7Ca ti 7rpc2 _
e

~a2

 

(1 .5 .11 )

which, as seen from (1 .5 .8), is proportional to v- 2, while

(1 .2 .2) varies lik e

A survey of the scattering in nth power potentials may b e
simply obtained from dimensional considerations . Thus, within
the domain of validity of classical mechanics, the scattering cross -
section must be proportional to b, wher e

bn=1 (/
2,k$)n

 

(1 .5 .12)
\ mov

which, for n = 1, corresponds to (1 .1 .4) and which, in case of
repulsive forces, gives the minimum distance of approach . We
have, therefore,

v-4 .
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da = bn •fn .(6) d m (1 .5.13 )

where, for increasing values of n, the angular distribution fn (~)
will tend more and more towards a uniform scattering in al l
directions, corresponding to (1 .5 .1) .

In quantum mechanics, on the other hand, the cross-sectio n
may besides the quantities appearing in (1 .5 .1) involve h an d
dimensional considerations are, in general, ambiguous . In cases ,
however, where the method of simple wave diffraction is applicable ,
the cross-section will, for a field given by (1 .5 .5), be proportional
to k,2, and it thus follows directly from (1 .5 .12) that

do, = b
n

n ~ 2-2ngn ( .ry) d w, (1 .5.14)

where h is involved through A . Only in the case n = 1, there-
fore, can this scattering law conform with the classical expression .

As regards the comparison between the formulae (1 .5 .13) and
(1 .5 .14), it may be noted that, while the approximation procedur e
leading to the latter formula, of course, gives the same result fo r
attractive and repulsive fields, such similarity appears only fo r
n = 1 in the classical calculations which, in case of attractiv e
fields, even lead to singularities for n > 2 . On the other hand, th e
simple wave treatment gives, for a field of the type (1 .5 .5), con-
vergent results only for 1 < n < 3 .

As regards the dependence of the scattering problem o n
C, we note that, according to classical mechanics, the mini -
mum distance of approach in a field of the type (1 .4 .1) i s
given by

For C ti 1, this formula gives e a, and the main de-
flections therefore take place in the part of the field cor -
responding to n = 2 . For larger C we find somewhat greater
values of e and, correspondingly, larger effective values o f
n . Still, the increase of e with C will be only slow, and th e
effective cross-section will in such cases be practically in -
dependent of v, remaining comparable with x a2 .

In the case of excessive screening, there will, as alread y
mentioned, exist an intermediary region in which neithe r

P =

 

e `~ .

 

(1.5.15)a
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orbital pictures nor simple wave diffraction will apply . In
this region, corresponding, according to (1 .5 .3) and (1 .5 .4), to

V C <x<C,

 

(1 .5 .16)

we must be prepared for quite . new features of the scatterin g
problem, which demand the application of more general
quantum-mechanical methods .

The case of repulsive fields is relatively simple, becaus e
the wave representing the incident particles will only to a
small degree be able to penetrate the potential barrier, rapidl y
rising at distance a . Since, in the region (1 .5.16), we have
A> a, the scattering will be uniform over all angles, and
the effective cross-section will over the whole region be o f
the order of magnitude na 2 , just corresponding, as we hav e
seen, to the value at both limits x = 4 and x = j/ C . An
illustrative example of the inadequacy, in the intermediate
region, of orbital pictures as well as of wave-mechanica l
perturbation methods, is afforded by the simple problem o f
the scattering from a quite impenetrable sphere of radiu s
a of particles with wave-length large compared with a . As i s
well known, we get in this case a uniform scattering distribu-
tion corresponding to a total cross-section 4a2, a result
which follows directly from the boundary conditions in wave
mechanics which, due to the vanishing of the wave functio n
over the interior of the sphere, demands along the whol e
surface r = a the same numerical values for the amplitudes
of the incident plane wave train and the outgoing spherica l
wave representing the scattered particles .

For attractive forces, the situation is essentially different .
Here, the wave function in the interior of the field wil l
closely approximate that of an "atom" formed by two
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particles of charges e l and e 2 and reduced mass mo . Now, the
distance over which the wave function in the central part
of the field reverts its phase is comparable with the "atomic
radius" given by

ro =

 

h2

 

2
= a x-2 .

 

(1 .5.17)
mo ~ e l e2 ~

 

b

Although, in the region (1 .5.16), we have A> a , correspond -
ing to x < C, we see that nevertheless ro < a, since x >
and the phase of the wave function will, therefore, underg o
major variations between r = 0 and r = a. The possibilit y
thus exists of the occurrence of peculiar quantum-mechan-
ical resonance phenomena depending on the behaviour of
the interior wave in the region around r = a, where it
must be fitted together with the incident and outgoin g
waves. Under these circumstances, the scattering cross -
section will vary strongly with the velocity of the inciden t
particles and may in principle take on any value from
zero to 4nA 2 .

Such effects are especially illustrated by the scattering
of electrons by heavy atoms. Thus, the effective collision
cross-section for slow electrons in inert gases was found
by RAMSAUER (1923) to be vanishingly small compared
with the geometrical cross-section of the atoms . The detailed
treatment of the phenomena (FAX1 N and HOLTSMARK 1927 )
shows widegoing analogies to acoustical resonance pro-
blems . For larger electron velocities for which A becomes com-
parable with a, more complicated scattering effects showin g
characteristic maxima and minima in the angular scatterin g
distribution have been observed (ARNOT 1931) . These ano-
malies, which depend very sensitively on the electron velocit y
(WERNER 1931 and 1933), have their origin in departures

Vidensk . Selsk .. Math .•fys . Medd . XVIII, B.
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from spherical symmetry of the wave function within th e
atoms, implying the appearance of zonal harmonics of
higher order (KALCKAR 1934) .. For still higher velocitie s
where << a and, thus, x >j 4, we enter into the regio n
where classical mechanics approximately applies .

§ 1 .6 . Survey of Collision Problems.
The situation as regards scattering in screened Coulom b

fields is schematically represented in Fig . 4, where every point
in the diagram represents a set of values of x and C . For
convenience, log and log 4' are chosen as coordinates . The
oblique line T corresponds to x = C and the line U to
x = re. . Further, the horizontal and vertical hatching s
indicate the regions for the applicability of classica l
mechanics and simplified wave scattering, respectively .
The various angular regions denoted by Rå, Rä, S, P, and
Q correspond to the different types of collisions discusse d
in the preceding paragraphs .

The vertical line L 1 , for which ç has a small constant
value, is drawn as an illustration of the considerations i n
§ 1 .4, and the sections into which Li is divided by the
abscissa axis and the lines T and U refer just to the case s
indicated in Fig . 3, the curves T and Rä corresponding t o
the points where Li cuts T and U, respectively.

The vertical line L 2 represents a large value of C cor -
responding to the problem of excessive screening discusse d
in § 1 .5 . While the section below the line U represents the
region S of spherically uniform scattering treatable by th e
method of simple wave diffraction, and the section abov e
the line T belongs to the region P in which, as indicate d
by the broken horizontal hatching, classical mechanic s
applies with certain restrictions, both simplified approxi-

§ 1 .6 .
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Fig . 4 .

mation methods fail completely in the intermediate un -
hatched region Q, where quantum-mechanical resonanc e
effects may occur .

As we shall see in the following, the regions Rä and R ."
will especially apply to the problem of the penetration o f
fast particles like a- and ß-rays and fission fragments ,
while the region P corresponds in particular to the situatio n
met with for slower particles such as recoil atoms fro m
radioactive disintegrations . For orientation, it may be re-
marked that in collision problems where all other para -
meters are fixed, a variation of the velocity will in the dia -
gram correspond to a displacement along a line parallel t o
U, and it is seen that, while such lines for x < VZ' will run
entirely in the region of vertical hatching, they will for x > j /
pass through regions where simple wave diffraction and class -
ical mechanics, respectively, apply as well as regions wher e
both of these mutually exclusive methods fail .

3•
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CHAPTER 2

Penetration Phenomena Depending o n
Nuclear Collisions .

§ 2.1 . Characteristics of Nuclear Collisions .

In the application to actual penetration phenomena o f
such simple calculations as those outlined in Chapter 1 ,
it must, of course, be taken into consideration that, in
general, collisions between atomic systems, built up o f
nuclei and electrons, present a complicated many-body
problem . Due, however, to the large mass of the nucleu s
compared with that of the electrons we may, with a very
high degree of approximation, distinguish between "nuclea r
collisions" in which momentum and kinetic energy are
transferred to translatory motion of the stopping atom as a
whole (elastic encounters), and "electronic collisions " in
which energy is transferred to the individual electrons o f
the atoms, resulting in atomic excitation and ionization pro -
cesses (inelastic encounters) . The latter effects, which in
many cases are primarily responsible for the stoppin g
phenomena, will be examined in detail in Chapter 3, but
here we shall first consider the part played in penetration
problems by the comparatively simpler nuclear collision s
in which the presence of the electrons in the atoms merel y
involves an electrostatic screening of the nuclear field
of force .

In nuclear collisions, it will thus be justified to mak e

§ 2.1 .
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use of a simplified atomic model in which a specificatio n
of the binding of the individual electrons is disregarded an d
an estimate of the charge distribution within the atom i s
obtained by an appropriate statistical procedure like tha t
developed by THOMAS and FERM . While in special problem s
it is often necessary to examine in detail this distribution
and the resulting force fields, it will, for the general survey
here attempted, suffice to recall that such methods lead ,
for a large part of the atomic region, to a potential just of
the type (1 .4 .1) discussed in the former chapter . Expressing
the screening distance a in terms of the "radius" of the
hydrogen atom

where ,u and r denote the electronic mass and charge ,
respectively, and writing

aoa= - ,
s

(2.1 .2 )

one finds, as is well known, for an atom of charge number z ,

(2 .1 .3)

as an approximate estimate of the screening. For heavy
penetrating particles like fission fragments, which over th e
whole range carry a large number of bound electrons, th e
total screening effect will, of course, depend not only o n
the presence of the electrons in the stopping atoms, but als o
on the electronic screening of the incident particles them -
selves and, therefore, in general present a somewhat com-
plicated problem. In many cases we may, however, stil l
reckon with a potential (1 .4.1) with a screening distanc e
given by (2 .1 .2) with
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' -}- ss = 1/x 1

 

z2 , (2.1 .4)

where z l and z 2 denote the atomic numbers of the colliding
atoms. In fact, this simple symmetrical expression may b e
shown to account roughly for the interaction between tw o
charge distributions corresponding to potentials of the typ e
(1 .4.1) for s equal to zl' and z2', respectively .

In the treatment of nuclear collisions we may, thus ,
directly apply the considerations of Chapter 1 according t o
which, as illustrated in Fig . 4, the various types of collision
problems are characterized by the values of the quantity x
and of the ratio between the collision diameter b and th e
screening parameter a . Introducing the "velocity" of the
electron in the hydrogen atom ,

E 2
vo

 

, (2.1 .5)

we get from (1 .3.8)
vox = 2 zlz 2 - (2.1 .6)v

and from (1 .1 .4), (1 .4.2), (2 .1 .1),

 

and (2 .1 .2 )

/

 

2

° 2 zlz2 s nlo ` U°) . (2 .1 .7)

An elimination of v from these two expressions gives

x 2

 

2 z i z ., m „
s

(2 .1 .8)

which, together with the above estimates for s, shows that
x is always larger than j/ and, consequently, we meet in
nuclear collisions only with problems corresponding to
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the region above the line U in Fig . 4. Looking, for th e
moment, apart from the case of electrons as incident
particles, it is further seen from (2 .1 .4) and (2 .1 .7) that ,
unless v «va, we have C « 1 . In fact, even the greatest
possible values of zl and z2 will be more than compensated
by the small value of ,u compared with nuclear masses .

For fast particles over the major part of the range, th e
collisions are thus of the types denoted in Fig . 4 by Ra and
Ra, according as x > 1 or x < 1, respectively . From (2 .1 .6)
it is seen that, for v < vo, we have always to do with th e
former case while, for larger velocities, it will depend on
the values of z i and z 2 whether the condition x > I for
the applicability of classical mechanics is fulfilled . In both
cases, the scattering will conform with the Rutherford la w
for angles larger than a small value Oa given by (1 .4 .3)
and (1 .4.8) for x > 1 and x < 1, respectively .

For particle velocities small compared with vo we may
have . j 1, corresponding to a scattering which, for al l
angles, differs from the Rutherford law . Since, however,
except for excessively low velocities, it follows from (2 .1 .6)
and (2 .1 .7) that x > the problem will belong to the
region denoted in Fig . 4 by P and, as discussed in § 1 .5 ,
the collisions may thus be largely treated by means of class-
ical mechanics . For increasing values of C, the scattering
approaches a uniform distribution over all relative angles
with a cross-section where e is of the same order o f
magnitude as a . Still, it must be noted that for very slow
particles such estimates as (2 .1 .3) or (2 .1 .4) lose their validity ,
since the colliding atoms will no longer be able to penetrat e
each other and, like in the kinetic theory of gases, we ma y
fore simply take the sum of the atomic radii, each bein g
comparable with a 0 .
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If the incident particle is an electron, in which cas e
zl = 1 and mo = ,u, we get from (2 .1 .7) and (2 .1 .3 )

= 2z{ Û2 )
2

.

 

(2.1 .9)

For fast ß-rays, for which v»» z 'I 'vo, we have, therefore ,
« 1 and, like in the case of encounters between nuclea r

particles, the collisions will be of the types R a and II::
according as

Uox = 2z -2 v (2 .1 .10)

is larger or smaller than unity . For smaller electron ve-
locities, however, for which C j 1, the collisions will not,
to the same extent as for heavy particles, be of the type P .
In fact, already for v < vozz', in which case > a0z2'1' = a ,
we have < , corresponding to the region Q in Fig . 4
where, as described in § 1 .5, characteristic quantum-me-
chanical resonance effects occur .

§ 2.2. Frequency of Individual Collisions .
Branch Distribution .

The statistical laws governing individual collisions
between atomic particles find direct application in the accoun t
of phenomena like the scattering of a-rays by thin foils o f
matter where the rays, except in those comparatively rare
cases in which they suffer a considerable deflection in a
single close nuclear collision, pass through the foils prac-
tically without change of direction or velocity . In general ,
however, it is necessary in penetration problems, beside s
individual effects of more violent collisions, to take into
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account the accumulative results of a very large number o f
collisions which, individually, produce only minor effect s
but which, together, are responsible for phenomena lik e
the continual bending of the paths, termed compound scat -
tering, and the gradual slowing down of the particles .

Such accumulative effects form the main topics of th e
following discussion but, in the present paragraph, we shal l
first consider a few problems depending on separate col -
lisions . While, already in the former chapter, reference wa s
made to the studies of large angle scattering, which have
been so important as a means of exploring the structure o f
atoms, we shall here briefly consider the phenomenon o f
branch formation which occurs when an atom in the stop -
ping material receives an energy sufficient to produce a
visible trace in the cloud-chamber, and the frequency an d
distribution of which is a characteristic feature of the variou s
types of penetrating particles .

From the considerations in § 2 .1 it follows that, for fast
particles for which « 1, the Rutherford law will hol d
over a considerable interval of the relative deflection angl e

and, specifying the branches by the angle p which the y
form with the stem and by the energy transfer T in th e
collision, we get within this region, from (1 .1 .7) and (1 .2 .1) ,
for the differential cross-section expressed in terms of p

dQ = 2 b 2 siny sec3 ydy

 

(2 .2 .1 )

and, from (1 .1 .8), (1 .1 .9), and (1 .2.2), for the distribution
of T,

d cr = By TT ,
where, the suffix v referring to nuclear collisions,

(2.2 .2)
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z 2 z 2E 4By = 2 n 22

 

(2.2 .3)m 2 U

An integration of (2 .2 .2) gives

(1

 

1= By ---Ti T2

for the cross-section for nuclear collisions with energy
transfers between Tl and T2 , provided that T 2 < Tm and
T> Ta , where Tm is the maximum value given by (1 .1 .9)
and where Ta is the value of T corresponding to the limiting
angle Da depending on the screening of the field . Since,
under the circumstances assumed, Da is small, we hav e
Ta (« Tm according to (1 .1.8) .

If we consider a particle penetrating a layer of matte r
of thickness AR, containing N atoms per cm3, we can
from (2.2.4) directly deduce the statistical distribution o f
the number of nuclear collisions suffered by the particle .
In fact, assuming AR to be chosen so small that in almos t
every case the particle will penetrate the layer without
appreciable change of its velocity, the average number o f
specified collisions is given by

w = NARd = NARBy ( 1 - 1) .

 

(2 .2 .5)Ti T2

Of course, the frequency of collisions will be subject to
statistical fluctuations and the probability for the occurrenc e
of just n collisions in an interval of T, where the mean
number is w, will be given by the well-known Poisson law

§ 2 .2 .

(2 .2 .4 )

nwP(n) =

 

e -w
n

(2.2 .6)

which holds for any problem involving effects dependin g
on a practically unlimited number of trials, for each of which
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the probability of occurrence is vanishingly small . In the
present problem, the trials are represented by the fortuitou s
collisions with the nuclei of the atoms along a section of
the path long compared with atomic dimensions .

The above formulae may be directly applied to fas t
particles like a-rays from radioactive disintegrations o r
nuclear fragments from fission processes . In fact, for
v -, 5 vo, . formula (2 .1 .7) gives, for fission fragments
(z 1 ,- 50), values of C of about 10 -3 in all stopping material s
and, for a-rays (zl = 2), values of the order of 10 -4 or
10 -3 depending on z 2 . Since B„ is proportional to
formula (2 .2 .5) accounts, in particular, for the conspicuous
difference . in the frequency of branching observed for a-rays ,
where the phenomenon occurs for only a very small fractio n
of the particles, and fission fragments, 'where each trac k
in general shows a large number of branches . By a statistica l
examination of the distribution of branches of specified
length along the tracks of cloud-chamber pictures of fissio n
fragments (BØGGILD, BROSTRØM and LAURITSEN 1940) it
has even been possible to draw conclusions from (2 .2 .5)
regarding the velocity range relation . Moreover, the existence
of two main groups of fragments with different masses an d
charges was borne out by the observation that the branc h
distribution of the tracks deviated markedly from (2 .2.6) ,
but could be well represented by a sum of two such ex -
pressions with different values for w corresponding to th e
different charges and velocities of the particles of the two
groups .

It is further of interest to note that the study of the
branch distribution gives a very direct means of illustrating
the difference between the Rutherford law and the more
uniform scattering distribution to be expected for slower
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particles for which

 

1 . In fact, from (1 .1 .7) and (1 .5 .1)
we find

da = o• sin 2 y dy,

 

(2 .2 .7 )

which differs essentially from (2 .2 .1), in particular for the

less violent collisions for which y~ 2 . While, thus, in

fission fragment tracks, the great majority of the branche s
form right angles with the stem, a distribution of the typ e
(2 .2.7) was actually observed by JoLI0T (1934) in cloud -
chamber studies of tracks of the much slower recoil atom s
in a-ray disintegration. This last result is in accordance
with the fact that, for such particles which have velocitie s

of about
io

vo, we get from (2 .1 .7) values of of the order

of unity.
In the region of uniform scattering, we further find fro m

(1 .1 .8) and (1 .5.1)

§ 2 .2 .

da=a
T

T
T. (2 .2 .8)

and, for the number of collisions for which Tl < T < T2 ,
we get, therefore,

w= NdRa T Tl .

 

(2 .2 .9)

In particular, this formula gives the total number of branche s
in a section J R of the range, if we put T2 = Tin and
Tl To where Tc is the smallest energy transfer to th e
gas nuclei giving rise to visible branching .

In problems where, as in collisions between hard elasti c
spheres, a is independent of the relative velocity, we shall ,
according to (2 .2.9), expect the branch frequency to de -
crease along the range as Tm diminishes and approaches T .
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In his experiments, however, JOLIOT finds-apart from
unexplained abnormal features of the pictures in the im -
mediate neighbourhood of the point where the radioactiv e
disintegration takes place-a steady increase in the numbe r
of branches along the track . This observation fits well with
the expression (1 .5.11) which, according to (1 .5.8), gives a
proportional to v-2, and which corresponds to the assump-
tion that, in collisions between the recoil particles and the
nuclei in the stopping material, the repulsive force varie s
approximately as the inverse cube of the distance . As men-
tioned in § 1 .5, a field of force of this type is to be expecte d
for. ti 1, a condition which has been seen to be roughly
fulfilled for the a-recoil particles . In the following, it will
be shown that the simple estimate of a also accounts for
the range velocity relation of these particles .

§ 2 .3. Stopping Effects of Nuclear Collisions .

Apart from the large angle scattering and the trac k
branching due to close nuclear collisions, a particle penetrat-
ing through matter will suffer a large number of less violen t
collisions the accumulative effect of which, as alread y
mentioned, gives rise to the gradual stopping of the particl e
and to the compound scattering . Although, as we shall see,
these stopping and scattering phenomena are intimatel y
connected, it will be convenient, in order to bring out th e
statistical arguments as clearly as possible, first to con -
sider the nuclear stopping problem in some detail .

To this purpose, we divide the collisions suffered by a
particle along a given part of its range, over which its motio n
on the average is changed only little, into a large number
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§ 2 .3 .

of groups corresponding to small intervals of the energ y
transfer T. The total energy loss of the particle may, there -
fore, be written

4E _

 

(2 .3 .1)

where ni , the number of collisions in the ith interval ,
will be distributed around its mean value w i. according to
formula (2 .2.6) .

The average value J E will, thus, be given by

AE = Z Ti w i

with a mean square deviatio n

S22 = (4 E - 4 E) 2 = TF (ni - wi)2= .11i

 

i
since from (2 .2 .6) it follows that the mean square deviation
of n i itself is just equal to wi . Passing to the limit of in-
finitesimal intervals for T, and introducing the differential
cross-section da, we get, with the notation used in § 2 .2 ,

dE = NARSTda

 

(2.3 .4)
and

S22 = NAR T2 da,

 

(2- .3 .5)

respectively, for the stopping power and its fluctuation s
within a small section AR of the range .

Considering first the case of fast particles for whic h
«« 1, the differential cross-section will be given by (2 .2 .2)

for Ta < T < Tm . Since TQ <K Tm and since, moreover, the
frequency of collisions with T < Ta for decreasing T rapidly
becomes negligible compared with (2 .2 .2), we may, in
estimating the contribution of nuclear collisions to th e

(2.3 .2)

, (2.3 .3)
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atomic stopping power, to a first approximation, disregard
the encounters for which T < Ta . Thus, we get from (2 .3.4)

d„E = NARB,,1og
Tm

(2.3 .6 )

and from (2 .3 .5)
Ta

f~,2 = NdRB„T,,,, (2 .3 .7)

While the expression for .1 .E depends essentially on Ta ,
we have simply put Ta = 0 in the expression for Q,, ,
for which, in case Ta (( m, the screening would only

constitute a minor correction .

As regards the argument in the logarithmic term i n
(2 .3 .6), we have from (1 .1 .8) and by means of (1 .4.3) and
(1 .4.8), respectively,

Tm ( 2__) 2

Ta

 

29Q

for x> 1
(2 .3 .8)

forx<1 .

For highly charged particles like fission fragments, it is seen
from (2 .1 .6) that x > 1 for all velocities in question, bu t
for fast particles of smaller charge like protons, a-ray s
or electrons, we may, in light stopping materials, hav e
x < 1 . In case C (( 1, it follows, however, from (2 .1 .8) that
the expression (2 .3 .8) will, even for x < 1, always be larg e
compared with unity.

Just due to the large value of the logarithmic argument,
formula (2 .3.6) represents for 4' ((1 a high degree of ac -
curacy in spite of the cursory character of the approxi-
mations involved. In fact, any more detailed estimate of
the distribution of T in the neighbourhood of Ta would

only lead to a correction of the same order of magnitud e
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as unity in the logarithmic term . Similarly, a closer inves-
tigation of the transition for x 1 between the distributio n

functions Ra and RQ would, for C « 1, give only a smal l
correction to the estimate of the stopping effects . Moreover,
we note that, as far as the logarithmic term is large, it wil l
be very insensitive to velocity variations, although th e
argument depends on v . For high speed particles, the rate
of energy loss in nuclear collisions will, therefore, accordin g

to (2 .2 .3), with high approximation vary like v-2 . As the
velocity decreases and the argument of the logarithmic ter m
gradually becomes smaller, d„E will, however, vary les s

rapidly with v . In such respects, the expression (2 .3.7) for
D„ is particularly simple, being, according to (1 .1 .9), in -
dependent of the particle velocity .

In the case of slower particles for which C $ 1, a rough
estimate of the nuclear stopping effects may be obtaine d
by assuming the scattering to be uniform over all solid
angles, corresponding to the expression (2 .2.8) for the dif-
ferential cross-section . Since any deviation from this distri-
bution for the weak collisions is of only minor importanc e
for the estimate of d„E as well as of D,,, we get

JE, = 2 NdRaTm (2 .3 .9 )

and

S2ÿ = 3 NARa T,2n (2 .3 .10)

from (2 .3.4) and (2 .3 .5), respectively .
In the particular case of C -,1, where, according t o

(1 .5.8) and (1 .5.11), the cross-section a is roughly pro-

portional to v-2, expression (2 .3 .9) gives a stopping powe r
approximately independent of the velocity. In Chapter 5,
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we shall see that such a rate of energy loss actually account s
for the range velocity relation of a-recoil particles . In this
connection, we may note that, just in the velocity region
where $ 1, the nuclear collisions constitute the mai n
source of energy loss, in contrast to the case of 4- << 1 ,
where electronic encounters often are predominant for th e
stopping effect . In the extreme case ») I, the value o f
a will, according to the considerations in § 1 .5, over a wide
velocity interval remain of the same order of magnitude a s
the gas kinetic cross-sections, and (2 .3 .9) therefore gives a
stopping power proportional to v2 . Such conditions are to
be expected for ß-recoil particles where, for medium atomi c
numbers of the radioactive substance, we have v ti 10 - 2vo
and

 

10 3.

§ 2.4. Statistics of Nuclear Stopping Effects .
The elementary penetration theory for nuclear stopping

effects, as outlined in § 2 .3, allows directly an estimate o f
the mean value 4 E and the mean square deviation 12 2 of
the energy loss suffered by a particle traversing a certai n
thickness of matter . If the values of d E are distributed
according to a normal law of error

(AE - L!E0) 2
W 0 (AE) = e

 

2 .Qo

 

(2 .4.1)V-2 5Qo

with maximum d Eo and half width Sa o , the theory thus
gives a comprehensive account of the phenomenon since ,
of course, we have simply 4 E0 = AE and Sa o = S2 .

To what extent the distribution of d E will actually b e
given by a formula of the type (2 .4 .1) Will, in the firs t

Vidensk. Selsk., Math. .fys . Medd . XVIII, 8 . 4
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instance, depend on the thickness of the matter penetrated .
Thus, for very thin layers, the stopping effect will be quit e
irregular, depending on only a few collisions . However ,
even if d E is the result of a very large number of individua l
contributions, it is well known from probability theory
that a normal law of error can be expected only if all th e
individual contributions are small compared with S2, or i f

S2 > Tm ,

 

(2 .4.2)

where m is the maximum value of the energy transfer i n
an individual collision . If this condition is not fulfilled, a
single encounter may, in fact, have an appreciable influenc e
on the phenomenon, and the distribution may then deviat e
essentially from a Gaussian law. Under these circumstances ,
the most probable value of d E, which in general is th e
quantity directly obtainable from measurements, need n o
longer coincide with the mean value d E and, similarly, th e
range straggling will not be essentially determined by th e
value of D . In such cases, therefore, an interpretation o f
experiments requires a more detailed analysis of the statistica l
distribution of d E .

A problem of this kind was first met with in the stopping
of ß-rays where, in electronic collisions, m l = m 2 = u and
where, therefore, values of T may occur which equal the
total kinetic energy E of the incident particle . Under such
circumstances, the condition (2 .4.2) is evidently not fulfilled
even for thicknesses of matter comparable with the whol e
range. In the discussion of the distribution of d E for . a
beam of ß-rays a distinction was accordingly made (BOHR
1915) between the great majority of the particles, which
suffer only smaller collisions and the stopping of which i s

§ 2.4 .
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a typical accumulative effect, and the few particles for which
the value of d E is mainly determined by single violent
collisions .

An approximate treatment was obtained by distinguishing
between collisions for which T is smaller or greater than a
certain value T* defined in such a way that the particle s
on the average suffer about one collision for which T > T* .
As regards the collisions for which T < T*, it was shown
that the resultant energy loss A *E is distributed roughl y
according to a Gaussian law, while the sporadic occurrenc e
of the more violent collisions primarily gives rise to a " tail"
in the distribution of J E extending far beyond the width
of the Gaussian peak . A detailed analysis of the problem
(WILLIAMS 1929) has given results which conform remark -
ably well with those obtained by such approximative con-
siderations and we may, therefore, here confine ourselve s
to the more cursory procedure' .

In order to examine to what extent condition (2 .4 .2) for
a Gaussian distribution of the energy losses is fulfilled fo r
nuclear stopping effects, we shall first consider the most
important problems, for which C «« 1, . In this case, it fol-
lows from (2 .3 .7) that (2 .4 .2) is equivalent t o

NARB, > m (2.4 .3 )

or, according to (2 .3.6), to

T
J ,E > Tm log

 

. (2.4 .4)
T
Ta

1 Added in proof : The writer's attention has been called to an
article by L. Landau (Journ . of Phys . U. S . S . R. 8, 201 (1944)) ,
who has essentially refined the theory by a more rigorous ma-
thematical treatment of the problem, by which he has succeeded
in obtaining an analytical expression for W (AE) .

4*
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The contribution of nuclear collisions to AE can, of course ,
even for values of AR comparable with the whole range ,

never be greater than E = 2 miv2 and, due to the energy

transfer to the electrons, it will in fact often remain essenti-
ally smaller . Since, further, in the case considered, th e
logarithm is great compared with unity, we see, therefore ,
that it is a necessary condition for the fulfilment of (2 .4 .4)

that Tm « E or, according to (1 .1 .9), that ml is either very
large or very small compared with m 2. Only in the case o f
ml » m2 , however, we have to do with a simple stopping
phenomenon since, for m l « m2, as we shall see in the next
paragraph, the scattering will, just under the circumstances
where (2 .4 .3) is fulfilled, be so large that we meet with
typical diffusion effects. If ml ' m 2 , the situation is quit e
analogous to the problems of the stopping of high speed
electrons in electronic collisions where, as mentioned above ,
we meet with a more composite statistical distribution o f
the resultant energy losses .

In the analysis of the distribution of A 2,E in cases where
(2.4 .2) is not fulfilled, we shall distinguish between col -

lisions for which T is smaller or larger than the value T*

defined by

 

T* = NAR B,

 

(2 .4.5 )

which is smaller than Tm just in those cases where (2 .4 .3)
does not hold . Since we shall assume that the total averag e
number of collisions, given by (2 .2 .5) for Tl = a and

T2 = Tm , is large, it further follows that a « T* .
Considering first the effect of the collisions for whic h

T < T*, we have for the mean value of the energy los s

A,*,E due to these encounters, in analogy to (2 .3 .6) ,

APE = NAR B„ log T,

 

(2.4.6)
a

§ 2.4 .
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and, corresponding to (2 .3 .7), by means of (2 .4.5) ,

12Y  = Nd R By = T*.

 

(2 .4.7)

Since T*» Ta we see from (2 .4.6) and (2 .4.7) that dy*E» Q
and since, moreover, as follows from (2 .4.7), none of th e
individual contributions to 4Ÿ E is larger than Sly, we may
conclude that, to a first approximation, the distribution o f
dvE will be given by a normal law of error correspondin g
to (2 .4.1) for a value of dE0 closely equal to LIE and
with a width D o of the same order of magnitude as Q .

As regards the collisions for which T > T*, their averag e
number will, according to (2 .2 .5) and (2.4 .5), be smaller
than unity, although approaching this value in the cas e
T* <( Tm where the condition (2 .4 .3) is far from being fulfilled
and where the distribution of AT thus deviates essentially
from a Gaussian law. Under these circumstances, som e
of the particles will suffer an energy loss several time s
greater than T* and, although the probability of suc h
violent collisions is very small, it will be far greater tha n
the probability of the energy loss exceeding A,* T by a
corresponding amount, as a result of accumulative effect s
with T < T* . The great majority of the particles will ,
however, either suffer no collisions with T > T* or wil l
suffer one or a few collisions, each with a value of T onl y
little larger than T* . It follows, therefore, that the distributio n
of d„E consists of a narrow peak and a flat tail extendin g
far beyond the width of the peak . Furthermore, it is see n
that the peak, although slightly unsymmetrical, resemble s
the Gaussian distribution of dŸ E . In particular will the half
width of the peak be comparable with ,Q,*, and the positio n
of the peak maximum will differ from dŸ E only by an
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E1

0 a„E

Fig. 5 .

amount of the same order of magnitude as S2* . As regards
the shape of the tail, it follows from the distribution la w
(2.2 .2) for individual energy losses that, for values o f
A„E - AvE large compared with S2Y  , the probability function
W (A„E) will decrease as the inverse square of 4,,E - APE .

A typical straggling curve is illustrated in Fig. 5, which
shows the distribution of A„E to be expected for fission
fragments of the light group (Z ti 38, A  96) with v v o

passing through 2 mm argon at N .T .P ., roughly correspond -
ing to half the residual range. In this case, we hav e

0 .09, as seen from (2 .1 .7), and, consequently, from
l'

(2 .3 .8), since x »» 1, a value of Tm of about 500. From
a

(1 .1 .9) and (2 .2 .3) it further follows that NAR B„ 0 .08 Tm
so that, from (2 .4 .5), we have 40a ' 7'*-- 0.08 Tm . The
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distribution of 4,,E is represented by the full-drawn curve ,
while W(z1E) is indicated by the broken curve . As regards
details of these curves, use has been made of the more
refined analysis by WILLIAMS (1929) . The most prob-
able value of d„E, represented by the position of th e
maximum of W(z1 E), coincides approximately with 4ÿE
while, as shown in the figure, d,,E is considerably larger,
due to contributions from the tail of the distribution curve .
In the case illustrated, dÿE is less than 4,,E by about 40 0/0 .
Further, the half width of the peak is seen to be of the
same order of magnitude as S2ÿ, whereas the value o f
which is also indicated, bears no such simple relation t o
the curves .

In contrast to the case C «« 1, where the great majority
of the collisions lead to energy losses very small compare d
with Tm , the various values of T are, according to (2 .2 .8) ,
for C' $ 1 equally probable and the distribution of the
resultant energy losses, therefore, has an essentially differen t
character . In this connection, we shall consider only th e
case mi »» m 2 since, for m l < m 2, the incident particle in
almost every collision will suffer a large deflection and th e
stopping and straggling phenomenon thus be overshadowe d
by diffusion effects . If, however, m l »» m 2, in which case ,
as seen from (1 .1 .9), the particles can lose only a very smal l
fraction of their energy in a single collision, the values o f
A VE, corresponding to a section of the range for which th e
average number of collisions is large, will be distribute d
according to a normal law of error. In fact, if NA Rte, which
represents the number of collisions, is large compared wit h
unity, it follows from (2 .3 .10) that Q » m, corresponding
to condition (2 .4.2) .
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§ 2.5. Compound Scattering .

It has already been . mentioned that the phenomenon o f
compound scattering, which is due to the accumulative
effect of a large number of small individual deflections, i s
closely related to the nuclear stopping effects . As we shal l
see, the compound scattering . offers, in fact, often a direc t
means of estimating the contribution of nuclear collision s
to the total stopping power of the substance .

In cases where a separation between the large angle scat -
tering and the compound scattering is possible, the majorit y
of the deflections 9 in individual collisions will be very small
and, provided the mean square of the resultant angle q5
through which a particle is scattered by passing through a
sheet of matter is also small, we, therefore, hav e

T" = ØZ =

 

(2.5 .1 )

where the collisions have been divided into groups corre-
sponding to small intervals of (p and where w i , as in
(2 .3.2), denotes the average number of collisions in the i t'

interval . Introducing the differential cross-section da, w e
may also write

= NAR S q~ 2 d 6

 

(2 .5 .2)

in analogy to (2 .3 .4) .
In order to stress the intimate relationship to the stoppin g

phenomena, it will be convenient to express the deflectio n
99 suffered in a collision in terms of the energy loss T and ,
in this connection, it will be simplest first to consider th e
case mi » m 2 , where only small values of q' can occur .
Thus, from (1 .1 .6) we have approximately
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M2 sin

or, by introducing T from (1 .1 .8) ,

Ø2
4m 2 T

2T
1- 

m ~

 

TT I

From (2 .5 .2) we find, therefore, by means of (2 .3 .4) and
(2.3 .5),

4m2 4 vE

 

S2'yTÿ = 2 ~ - 2 - ,

 

(2.5 . 5)
m t Tm Tm

where, as in the preceding paragraphs, the suffixes v indicate
that we are concerned with the effects of nuclear collisions .

In the case of minor screening (C <K 1), the ratio between
the first term and the second term within the brackets o f

T
(2.5 .5) is equal to log T , as seen from (2 .3 .6) and (2 .3 .7) .

a
Since Tm » Ta, we may, to a first approximation, neglec t
the second term and get from (1 .1 .9), neglecting m 2 com-
pared with mi ,

m 4v E=

 

(2 .5.6)m l E

For excessive screening (' j 1), where the formulae (2 .3 .9)
and (2 .3.10) for d,,E and S2~ are to be applied, we get ,

instead,

(2 .5 .7)

since the second term within the brackets in (2 .5 .5) is equal

to two thirds of the first term . In particular, it follows from
these expressions for [Ç that, even if A ,,E is comparabl e

(2 .5 .3)

(2 .5 .4)

T2_
1 m 2 4,,E

y 3 ml E



58

 

Nr . 8 . NIEGS BOHR :

with E, the resultant deflections will, for mi »» m 2 , actually
be small, as is presupposed in (2 .5 .1) .

Like for the energy losses considered in § 2 .4, it will in
general be necessary to investigate in some detail the statistica l
distribution of the scattering angles and, to this purpose ,
we may use a criterion similar to (2 .4.2) . Since the larges t
individual deflection angle qn, , according to (2 .5 .3), is equal

to
II

2m2, it follows from (2 .5.6) or (2 .5.7), respectively, that1
the compound scattering will be of the Gaussian type i f
dE

is large compared with m2 . While, of course, for very
i

thin layers of matter corresponding to only few collision s
we can expect no such simple statistical regularities, we see
that, in case d„E E, the distribution of Ø will, for
m l »» m 2 , actually correspond to a normal law of error
with a mean square deflection angle equal to T,2, .

If m i is comparable with or smaller than m2i large
individual deflections may occur, and the phenomenon will
primarily depend on the relative frequency of large an d
small deflection angles . As already indicated in the forme r
paragraph, we meet in this respect with an essential differenc e
between problems for which « 1 and those where j 1 .
In fact, in the latter case, the distribution of '0 will be nearl y
uniform over all angles, and a considerable fraction of th e
collisions will result in large deflections ry. If the average
number of collisions within the section of the range con -
sidered is large, we therefore have to do with a complete
diffusion of the incident beam of particles . In the case of

« 1, it follows from (2 .2 .5) that large deflections will b e
frequent or rare, according as (2 .4.3) is fulfilled or not .
While, in the former case, we have again to do with a

§ 2 .5 .
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typical diffusion problem, it will in the latter case in genera l
be possible to separate between "single" and "compound"
scattering .

This last problem, which has been especially examine d
by BOTHE (1921) and by WILLIAMS (1939 and 1940), present s
a close analogy to the problem of the energy losses discussed
in the preceding paragraph . In conformity with the pro-
cedure used in distinguishing between the peak and the tai l
distribution of d„E, we may thus, in the scattering problem ,
separate between the effects of deflections smaller and larger
than the value 9o* which corresponds to a collision with
energy transfer T* .

An estimate of the compound scattering in nuclear col -
lisions for which ml < m 2 may under such circumstance s
be obtained in a similar way as that used in calculatin g

for ml »j m 2 . Since the deflection angles corresponding
to collisions in which T < T* are small, we have fro m
(1 .1 .6) with a high approximatio n

m
295,

 

ml +m 2

and, thils, from (1 .1 .8) and (1 .1 .9) ,

2 M 2 T9,

 

m 1 E

Provided the resultant spatial deflections due to individua l
collisions for which 99 < g9* . also remain small, we get from
(2 .3.4) and (2 .5 .2) for the mean square of these deflection s

(2 .5 .8)

(2.5 .9)

A E(1IJ*)2 _ m2 v

m l E
(2.5 .10)

where A *E is the total average energy loss due to the col-
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lisions in question. Since, from the considerations in § 2 .4 ,
it follows that /1E »» T* if the number of collisions i s
large, we see from (2 .5 .9) and (2 .5.10) that, in this case ,
['ÿ )» (p* . Consequently, it is well justified to distinguish

between a Gaussian distributed compound scattering and a
single scattering given by the Rutherford law .

Introducing formula (2 .4 .6) for ZI E, we get from (2 .5.10)
by means of (2 .4.5) an expression for Yrÿ which closely
coincides with that deduced by BOTHE (1921) and applied
by him especially in the study of the compound scatterin g
of a-rays in different materials . The problem of the scattering
of ß-rays has been considered by BOTHE (1923), and in
particular by WILLIAMS (1939 and 1940), who has invest-
igated in great detail also the contribution of individua l
scattering angles larger than q9* to the average resultant
deflection . In this connection, it is of particular interest t o
note that just the phenomenon of compound scattering offers
a direct test of the different effects of the screening of th e
nuclear field to be expected for x < 1 and x > 1, respect-
ively . In fact, as pointed out by WILLIAMS (1945), the
measurements of the scattering of a-particles in heav y
materials where, according to (2 .1 .6), the value of x is
large, are found to conform with the calculations based on
classical mechanics while, for fast ß-rays, where x < 1, th e
simple wave-mechanical treatment is consistent with . ex-
perimental results .

While, in problems of nuclear stopping, we need not ente r
on relativity effects since, for very large velocities, electroni c
stopping completely predominates, it is of importance, as regard s
the compound scattering, to consider the corrections to be intro -
duced for v ti c . This problem, which has been treated in detail
by WILLIAMS (1939), is rendered comparatively simple by th e
circumstance that the very violent collisions in which specifi c
relativity effects occur have no great influence on the compoun d

§ 2 .5 .
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scattering. The primary modification to be introduced in the abov e
formulae arises, therefore, from the increased inertia of the particl e
and is accounted for by simply replacing ml by mg in (2 .5 .6 )
and (2 .5 .10) . Still, for very fast particles where the wave-length
becomes smaller than nuclear dimensions, it is further necessary
to take into account the deviations from the Coulomb scatterin g
due to the finite size of the nucleus . As shown by WILLIAMS (1939),
the latter effect, which may be treated on the same lines as the
screening problems considered in § 1 .4, implies a cut-off of th e
Rutherford distribution for angles larger than a certain Iimitin g
value.

The close relationship between compound scattering and
stopping effects in nuclear collisions gives, as already indi-
cated, a means of estimating the part played by such colli-
sions in the penetration phenomena . For this purpose it is
essential that electronic collisions, although often of deter -
mining influence on the stopping, are usually of only se-
condary importance for the scattering . In, fact, for very fas t
particles, the contribution of each atomic electron to T2 will ,
apart from minor differences in the logarithmic term, be give n
by an expression corresponding to (2 .5 .6) or (2 .5 .10) for a
nucleus of unit charge, and the resultant value of Ÿ!2 may,
therefore, approximately be obtained from these expressions
by simply replacing z2 by z2 + z . For smaller particle velo-
cities where, as follows from the considerations in Chapter
3, the state of binding of the atomic electrons is to a lesse r
degree influenced by the collisions, the effect of these elec-
trons is essentially confined to the screening of the nuclear
field, which is already included in the estimates of Ty .

From measurements of the compound scattering and o f
the energy decrease in a given section of the range, it is thu s
possible by means of the equations (2 .5.6), (2 .5 .7) or
(2.5.10) directly to determine the contribution of nuclear
collisions to the stopping effect . In particular, the well-known
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fact that the tracks of fast a-particles, except at the very
end of the range, form almost straight lines correspond s
to the circumstance that nearly the whole energy los s
is due to electronic collisions . In the case of fission frag-
ments, however, the study of the conspicuous bending o f
the tracks in cloud-chamber pictures (BØGGILD, BROSTRØ M

and LAURITSEN 1940) has given evidence that the nuclea r
stopping effect is in no way insignificant and even become s
predominant in the last part of the range where the velocity
is comparable with vo . To such problems we shall return
in Chapter 5 in connection with a closer discussion of th e
bearing of the considerations in this chapter on the relativ e
contribution of nuclear and electronic collisions to the stop -
ping and straggling phenomena .
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CHAPTER 3

Atomic Excitation and Ionization i n
Penetration Phenomena.

§3.1 . Treatment on Classical Mechanics of Ionizatio n
and Electronic Stopping Effects .

In collisions between atoms and swiftly moving particles ,
there will, as already mentioned, besides the transfer o f
energy and momentum from the incident particle to th e
atom as a whole, also be an interaction between the particl e
and the individual atomic electrons to take into account.
This interaction, which often is the main source of th e
stopping effect, may, in fact, result in an ionization or ex -
citation of the atoms along the path . As already indicated
in the Introduction, the treatment of these phenomena ha s
been an important test of the methods of atomic mechanic s
and has not least offered instructive lessons as regards th e
extent to which the application of classical mechanical con-
cepts is adequate and at what points proper quantum-
mechanical analysis is required . In order to bring out the
principal arguments as clearly as possible, it will be con-
venient to recall the outlines of the development by whic h
the situation has been gradually clarified and, to this pur -
pose, we shall first consider the problem from the stand -
point of ordinary mechanics .

The subject was originally taken up by J . J . TrioMSO N

(1906) who, several years before the discovery of the atomic
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nucleus, discussed the stopping of high speed particles du e
to collisions with the electrons in the atoms of the matter
penetrated. Assuming that the velocities of these electron s
are small compared with the particle velocity, and neglectin g
in the first place the effect of the interatomic forces during
the encounter, THOMSON deduced, by simple mechanical
considerations like those referred to in § 1 .1, an expressio n
for the statistical distribution of the individual energy losse s

equivalent to (2 .2.2). With our notation, the differentia l
cross-section for collisions between an atomic electron o f
charge e and mass ,u initially considered at rest, and a
particle of charge number z l and velocity v was, thus, found

to be

da =B E7 , 2 , (3 .1 .1 )

where
2

 

4z 1 BE =2 7c~ v2 , (3 .1 .2)

the suffix e standing for electronic collisions as distinct fro m
nuclear collisions considered in Chapter 2 .

In particular, formula (3 .1 .1) was used by THOMSO N

(1912) to estimate the ionization effect of fast particles o n
the assumption that ionization occurs if the energy transfe r
to an electron exceeds the so-called ionization potential . I f
the various electrons in each atom are specified by an inde x
s, and the energy which is necessary to remove the stn

electron from the atom is denoted by Is , the average number
of ions produced should, therefore, corresponding to (2 .2.5) ,

be given by

w j = N dRB f

 

(3.1 .3)
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where the summation is to be taken over all atomic electrons
for which the ionization energy IS is smaller than Tm , the
largest possible energy transfer in free collisions . From
(1 .1 .9), we have

Tm = (~)2uU2 ,

 

(3.1 .4)

where the italic factor in brackets is to be omitted for heavy
penetrating particles (m l » m2 = ,u) and to be included only
if the incident particle is an electron (ml = m2 = ,u) . This
way of combining the formulae for the various types of par-
ticles we shall apply throughout in the following .

The average energy (4 £E)i spent in ionization pro -
cesses is, on the above assumptions, given b y

Tm
(dFE)I = NdRB, ~ log j , (3 .1 .5)

obtained from (2 .3 .4) and (3 .1 .1) by summing, as in (3 .1 .3) ,
over the atomic electrons for which IS < Tn, . According t o
classical mechanics, we must, however, expect that energy
may be transferred also in collisions which do not result
in the removal of an electron from the atom . Still, it is
evident that, in estimating this energy transfer, it is not
permissible entirely to disregard the interatomic field of
force, since the integral (2.3.4) diverges for vanishingly
lower limit of T . In THoMsoN's original treatment, it was
assumed that formula (3 .1 .1) would hold only for value s
of T corresponding to impact parameters smaller than the
average distance between the electrons in the atom while,
due to neutralization effects, the average energy transfer wa s
considered to be negligibly small in the more distant col -
lisions . In a subsequent attempt by DARWIN (1912) to adapt

Vidensk. Selsk., Math .-fys. Medd . XVIII, 8 .
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the theory to the model of the nuclear atom, it was simply
assumed that only collisions in which the particle penetrate s
the interior of the atom will contribute to the energy loss .

While the exchange of momentum between the particl e
and the atom as a whole is limited by the screening of th e
nuclear fields by the surrounding electrons, the limit of fre e
energy transfer between the particle and the atomic elec-
trons, however, will not depend primarily on the spatia l
charge distribution within the undisturbed atom. In fact,
the stopping effect of the individual atomic electrons depends ,
in the first instance, on their displacement within the ato m
during the encounter . Notwithstanding the determining in-
fluence of the atomic forces in case T < Is on the state of
binding of the electron after the collision, we must o n
ordinary mechanics expect that the binding forces canno t
appreciably affect the energy transfer if the interactio n
between the particle and the electron is practically confine d
to a time interval short compared with the atomic oscillatio n
period. Encounters of duration long compared with th e
atomic period, however, will practically have the characte r
of an adiabatic process in which, at any moment, the ato m
may be regarded as exposed to a static field and, if the dis -
placement of the electron during the encounter does not lea d
to its removal from the atom, its state of binding will afte r
the collision be the same as before .

The atomic binding forces, thus, introduce, as regard s
the energy transfer, a kind of screening not of static, but o f
dynamic origin. In estimating the effect of this screening ,
we may compare the atom with an ensemble of harmonic
oscillators, each consisting of an electron bound in a quasi -
elastic field of force . As a measure for the extension of this
field we may take

§ 3 .1 .
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as ,
us
w (3 .1 .6)

where cos is the cyclic frequency of the sth electron and
where us is an "orbital" velocity defined b y

iIs = 2us
. (3.1 .7 )

For the most loosely bound electrons in atoms, a s and us
are of the same order of magnitude as ao and va introduced
in § 2.1 while, for the more firmly bound atomic electrons ,
as may be considerably smaller than ao and us )) vo .

From the point of view of classical mechanics, the col-
lision problem is particularly simple if v )) u s and if,
moreover, b « as , where b is the collision diameter defined
by (1 .1 .4) . In fact, the duration of a collision with impac t
parameter p large compared with b will, as regards order of

magnitude, be given by P and this duration will, there -v
fore, be comparable with 1- for a value of p given byws

d = U
.s (3 .1 .8)

ws

For v )) us , it is seen that ds )) as and, for as )) b, w e
thus also have ds )) b . In this case, we may therefore dis -
regard the influence of the binding forces for p « ds , and
the statistical distribution of T in such collisions will b e
given by (3 .1 .1) .

Denoting by is the value of p for which T = Is , w e
get, from (1 .1 .4), (1 .1 .10), and (3 .1 .7) ,

is = (i-) b û ,

 

(3.1 .9)

5*
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holding for v »» us and as ») b, in which case b «« is «« ds .

Under such circumstances, the effect on the atom of a n

impact with p j ds will amount to only a small perturbatio n

and, since ds » as , the force exerted by the incident particle .
will, moreover, be practically uniform over the atomic re-
gion in question. The mechanism of the energy transfer i n
these collisions, thus, presents a problem closely analogou s
to that of dispersion and absorption of electromagnetic
radiation with wave-length large compared with atomic
dimensions .

In the case v» us and a s »» b, it is thus possible to
divide the collisions into two groups which each in its wa y
presents special simplifications and, due to the latitude i n
the separation between the groups, a high accuracy is ob-
tained by means of such a simple analysis. A detailed cal-
culation (Bolin. 1913) gave the result that the total energy
transfer is given by

4 L E = N4RB E ~ log

 

(3 .1 .10 )

where k is a numerical factor equal to 1 .2611) and where
Ds is the energy transfer in a free collision with impact
parameter ds . Since ds »» b, we have

 

Tin

 

itt v'
Ds

 

1 2b S / 2

 

\ l 2 / z e2ws )2

 

(3 .1 .11)

from (1 .1 .4), (1 .1 .10), and (3 .1 .8) .
If, for some of the atomic electrons, us

 

v, the proble m
is of a more complicated character and the collisions cannot ,

1) This number may be expressed in terms of EuLEn's constant C
as 4e -2C.
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as above, be divided into two simple groups . The contri-
butions of such electrons to the stopping effect will, how-
ever, in general be small . In fact, for us ») v, in which
case, according to (3 .1 .4) and (3 .1 .7), we have Is » m ,
the binding forces will prevent a removal of the electron
from the atom and will give even the closest collisions a
practically adiabatic character. In estimating the electroni c
stopping of high speed particles we may, therefore, to a firs t
approximation, simply confine the summation in (3 .1 .10)
to electrons for which Is < Tr n .

An essential correction in the stopping and ionizatio n
formulae, however, may have to be introduced if, for some
of the electrons with us < v, the value of as is smaller than
b . In fact, in this case, is will exceed ds and the latter quantity
will no longer represent an effective adiabatic limit . Under
such circumstances, the energy loss may be somewhat larger
than given by (3 .1 .10) while, at the same time, the ionizatio n
may be considerably smaller than given by (3 .1 .3) . To this
problem, which was first raised by LAMB (1940) in a
discussion of the penetration of highly charged fission frag-
ments, we shall return in § 3.3 when considering the scope
of the theory in greater detail . We may, however, note that
the condition as > b is always fulfilled for fast particles if
their charges are not very large compared with the ele-
mentary unit .

In the stopping formula (3 .1 .10), relativity refinements ar e
not taken into account, but it is easy to extend the calculation s
to velocities close to that of light. In fact, for the collisions i n
which the electron may be regarded as free, the energy transfe r
will, according to the considerations in § 1 .1, in case p »» b, be
given by (1 .1 .12) even for v ti c, since the contraction of th e

field in the ratio 1 =

 

1--2 is just balanced by a cor-
Y

responding increase in the field intensity . The shortening of the
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duration of the collision implies, however, that the effective limi t
of adiabatic cut-off will be larger than (3 .1 .8) by a factor y . From
a more detailed calculation (Bonn 1915) like that leading t o
(3 .1 .10), taking into account not only the component of the forc e
perpendicular to the motion of the incident particle but also th e
component parallel to this motion, it follows that, apart from th e
factor y in ds , implying .a decrease in D S by a factor y 2, the loga-

rithmic argument must be multiplied by e ' ' .

It is true that, for v

 

c, special considerations are necessary
for collisions with p b . Partly, however, these collisions are o f
minor importance for the total energy loss, if only the logarithmi c
terms in (3 .1 .10) are large ; partly, in the most important cas e
of v ti c, that of fast ß-rays, it is necessary, like for problems of
nuclear stopping discussed in § 2 .5, to distinguish between th e
average energy loss and the most probable energy loss of which
the latter, which does not depend on the very close collisions ,
is of primary importance for the analysis of the experiments . To
such problems of the distribution of the energy losses we shal l
return in § 3 .4 .

The mechanism of stopping of a particle passing throug h
matter may be further elucidated by a direct estimate o f
the electric field which originates from the polarization of
the medium and which acts as a kind of brake on th e
penetrating particle . Such a procedure is illustrated i n
Fig. 6, where the centre line, G, represents the path of a
positively charged heavy particle, the position of which a t
the instant considered is indicated by the foot of the arrow .
The small circles represent the atoms which, for simplicity ,
are assumed each to contain only a single electron with orbita l
extension and velocity a and u . It is assumed that the adia-
batic limit d is large compared with a, corresponding to
u» u, and it is also supposed that a > b and that, conse-
quently, d is larger than the ionization limit i . In the figur e
are indicated the orbits of the electrons prior to the instant
considered, although, in the case of ionization, the electro n
orbits are not traced beyond the particle path . Outside the
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Fig . 6 .

adiabatic limit, the positions of the electrons will exhibit com-
plete symmetry with respect to a plane through the particl e
perpendicular to C, and these electrons will, therefore, give
rise to no resultant force on the particle . Inside the adiabati c
limit, however, there will be a closer approach of the electron s
to the line C behind the particle than in front of it, an d
these electrons will, therefore, create an electric field directe d
against the motion of the particle .

To estimate the strength of the field, we may simply
calculate the electric charge accumulated in the " wake" of
the particle, represented by the cone A containing the atom s
for which the collision is practically completed . Since a
measure of the displacement of a free electron in a collisio n
for which p »» b, according to the considerations in § 1 .1 ,
is given by b, the surplus charge in a section of the con e
at distance x behind the particle and of thickness dx will
be roughly 27tsNbxdx, where, as above, N denotes the
number of atoms per unit volume. For the attractive forces
of this charge on the particle we, thus, have approximately

ppppcccc cccccci/ccccc c

d F 2 7c z1 s 2 bN dx ,
x

(3 .1 .12)
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holding for x» b . For smaller values of x, the displacement
perpendicular to the path of the particle will be smalle r
than b and, as a rough estimate of the total force acting
on the particle, we may write

§ 3 .1 .

d

dF "z', 2nz1 E 2 bN log 2b
bi a

Fx (3 .1 .13)

which, as seen from (1 .1 .4), (3 .1 .2), and (3 .1 .11), closel y
coincides with (3.1 .10) . A more accurate analysis of the
stopping problem from the point of view here indicated i s
given by A . BOHR (1948) .

So far we have assumed that the individual collisions
between the particle and the atomic electrons can be con -
sidered independently . Like in well-known optical problem s
we must, however, be prepared that the polarization o f
the medium, under certain circumstances, may essentiall y
affect the field exerted on the electrons during the pas -
sage of the particle . This effect, to which attention was first
drawn by SWANN (1938), has been considered in detail b y
FERMI (1940), who showed that, whereas for v -- c it may
imply an essential reduction of the stopping power, th e
correction is for v << c in general very small . Still, as pointed
out by KRAMERS (1947), we meet with an interesting ex-
ception for substances like metals containing free electrons .
In fact, in this case, corresponding to co, = 0, the adia-
batic limit (3 .1 .8) must be replaced by the distance at whic h
the polarization effectively screens the field of the particle .
In the treatments of FERMI and KRAMERS, the influence o f
the polarization is estimated by considering the substance
as a dielectric continuum, but it is of interest that, as shown
by A. Bonn (1948), the phenomenon may also be treated



§ 3 .2 .

 

The Penetration of Atomic Particles through Matter.

 

73

from the microscopic point of view, whereby in particula r
the relationships to ordinary penetration theory are brought
out more clearly . The relativity effects are here taken into
account by considering the retardation of the fields, and a
discussion is given of the intimate connection between the
polarization effects and the peculiar radiation phenomena
observed by CERENxov (1934) . For these phenomena, the
theory has been developed by FRANK and TAMM (1937) and
by TAMM (1939), who have shown that the electrons radiat e
when their velocity exceeds the phase velocity of light in
some spectral region .

§ 3.2. Quantum Theory of Stopping and Ionization .
The simple mechanical considerations outlined in the

preceding paragraph account in a general way for the de-
pendence of the ionization and stopping effects on the charg e
and velocity of a- and ß-rays. A closer test of the ionization
formula was for a time prevented by the experimental dif-
ficulties of distinguishing between primary ionization an d
secondary ionization effects produced by fast electrons ex-
pelled from the atoms in the more violent collisions, but
later it has been definitely established that (3 .1 .3) gives
values for the number of primary ionization processes
which, in many cases, are several times too small . Also the
stopping formula (3 .1 .10) was found not to be in full agree -
ment with the measurements on a- and ß-rays and, especially
in the latter case, to give values for the stopping power
appreciably larger than those observed .

In view of the subsequent development of the quantum
theory of atomic constitution, it was natural to look for the
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origin of the deficiencies of the classical formulae in th e
failure of ordinary mechanics in accounting for atomi c
reactions and, in particular, in the fact that energy transfer s
in such reactions can only take place in discrete amounts ,
unless an electron is completely removed from the atom.
Since the excitation energies are never much smaller than
the ionization potential, it was, as a first attempt to modif y
the stopping formula (3 .1 .10), suggested (HENDERSON 1922)

simply to replace the lower limit by IS and that, thus, ex -
pression (3.1 .5) should closely represent the total energ y
loss. This formula, however, was found (FOWLER 1923) to
give a stopping power for a-rays only about half the ex-
perimental value .

From simple correspondence arguments, it was also soo n
realized that any such procedure of modifying (3 .1 .10) was
not justifiable (BOHR 1925) . In fact, the situation is closely
analogous to optical dispersion problems where the averag e
absorption of radiation by virtual atomic oscillators of give n
frequency and strength is exactly the same in quantum
theory as in classical electrodynamics, despite the cir-
cumstance that, according to classical theory, any amoun t
of energy can be transferred from the radiation field to th e
atomic oscillators while, in quantum theory, such transfer
can only take place through absorption of individual ligh t
quanta .

It is true that the paradoxes here involved, which for a tim e
even led to doubts regarding detailed energy balancing, wer e
felt especially acute in considering collisions the duration of which
is short compared with the electronic periods . In fact, in such
collisions, the interaction between the particle and the electron
would, on ordinary mechanical ideas, have come to an end befor e
the atomic field responsible for the fixation of the stationar y
energy levels had opportunity to exert any influence on the cours e
of the collisions . After the establishment by HEISENBERG of the
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principle of indeterminacy, and after the recognition that the well -
defined application of conservation theorems is complementary t o
the use of space-time pictures, all such apparent contradiction s
do, however, disappear (Bonn 1928) . In particular, it is impossible
by any conceivable experimental arrangement to follow the tem-
porary course of a collision within time intervals smaller than th e
atomic periods without an uncontrollable amount of energy large r
than the spacing between the atomic levels being exchange d
between the particle and the measuring apparatus .

The analogy between collision and dispersion phenomen a
was stressed in a very suggestive way by FERMI (1924), who
proposed to estimate the atomic stopping effects for fast
particles on the basis of empirical evidence regarding the
absorption of high frequency radiation . To this purpose ,
the perturbing force exerted by the particle on the atom
was analyzed, as a function of time, into harmonic com-
ponents, and the effect of each component was compare d
with the absorption of electromagnetic waves of corre-
sponding frequency. Although such a procedure involve s
complications as regards close collisions, it is, at any rat e
in principle, adequate just for the more distant collisions
where the effect of the interatomic forces is of essential im -
portance for the energy transfer . In particular, it is evident
that, for impact parameters larger than (3 .1 .8), the collision s
will acquire an adiabatic character, since the perturbing
field will no longer contain components which can give rise
to atomic resonance .

Shortly after the development of proper quantum me-
chanics, the problem of the energy transfer in distant col -
lisions was treated in detail by GAUNT (1927), whose cal-
culations for hydrogen gave very nearly the same result a s
the classical mechanical considerations involved in the de-
duction of (3 .1 .10). In fact, the only alteration required by
quantum mechanics consists in replacing the summation
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over the individual atomic 'electrons with specified oscilla-
tion periods by a sum of terms corresponding to the various
virtual oscillators giving rise to atomic resonance . Since the
statistics of energy transfers in free collisions is the same in
quantum mechanics as in classical mechanics, the con-
clusion was therefore tempting that the stopping formul a
(3 .1 .10), apart from the refinements of virtual oscillators ,
was substantially correct . As regards the ionization effects ,
however, the arguments in question imply that the classica l
formula (3 .1 .3) needs correction . As especially stressed by
WILLIAMS (1931), a considerable part of the excitation an d
ionization effects will, in fact, arise from resonance in distan t
collisions where, on classical mechanics, the energy transfe r
would consist of individual contributions small compare d
with Is .

In the meantime, however, a great progress was achieve d
by BETHE (1930) who, by a comprehensive quantum-mecha-
nical calculation based on BoRN's treatment of collisio n
problems, obtained not only an ionization formula differin g
from (3 .1 .3), but also a formula for 4,E which differ s
essentially from (3 .1 .10). With the notation used above ,
BETHE ' S formula may be written

2
( 21 , 2 ~ v

4F E = 2N4RB E ~ fi log  ~ w

 

(3 .2 .1 )
~

 

I

where the summation is extended to the various virtua l
atomic oscillators of strength fi and frequency cot . It i s
significant that the logarithmic term in (3 .2 .1), in contras t
to (3 .1 .10), does not depend on the charge of the inciden t
particle and, from (3 .1 .2), it thus follows that the stoppin g
power is proportional to zi , as is a direct consequence o f
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the approximation method applied . Formula (3 .2.1) was
found to be in very satisfactory agreement with experiment s
on stopping of a-rays, in particular in light substances wher e
the atomic constants involved can be evaluated with grea t
accuracy .

For the purpose of a comparison with the previous stop -
ping formulae, BETFIE ' S expression may be somewhat sim-
plified . In fact, neglecting minor coupling effects between
the electronic bindings, we may attribute the oscillators to
the transition probabilities of the individual atomic electrons .
Since the total oscillator strength for each electron is clos e
to unity and since, for the most significant transitions of the
sth electron, we have h a's ti Is , formula (3 .2.1) may ap-
proximately be written

dfE = 2 N dR BF~ log (2)
Is

(3.2 .2)
s

which is very nearly twice the energy transfer given by
(3 .1 .5) . In comparing (3.2 .2) and (3 .1 .10), it is convenient
to introduce the quantity x defined by (1 .3 .8) and which ,
in electronic encounters, according to (2 .1 .6), may be
written

x = 2
U

= 2zi
U° .

h In fact, for T. » Is , which is presupposed in both formulae ,

(3 .2 .3)

we get, by putting h ws = Is , from (3 .1 .4) and (3 .1 .11) ,

( (2)T,ny = m Is

 

Ds x 2 . (3.2 .4)

We therefore see that, apart from the factor k which may
be omitted in this approximation, the two formulae just
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coincide for x = 1, while (3 .2 .1) gives smaller or larger
values than (3 .1 .10) according as

 

< 1 or x > 1 .
As regards the relationship between the two formulae ,

it should be stressed that it is not simply the question o f
replacing (3 .1 .10) by (3.2 .1) in all applications, but that
each formula has its restricted region of validity . On the
one hand, x << 1 is the necessary and sufficient conditio n
for the applicability of the quantum-mechanical approxi-
mation method applied in the deduction of (3 .2.1) ; on the
other hand, x »» 1 is, as we have seen in § 1 .3, just the
condition for the applicability of orbital pictures in ac -
counting for the collision between two point charges and ,
in this case, the considerations in § 3 .1, supplemented with
simple correspondence arguments, may therefore be ex-
pected to be appropriate . For fast a- and ß-rays, it is seen
from (3 .2 .3) that, in general, x will be small compared wit h
unity, but the classical formula has acquired renewed interes t
in the study of the penetration of the highly charged fission
fragments for which x is very large (BOHR 1940 and 1941) .

For such highly charged particles, however, special con-
siderations are, as already mentioned in § 3 .1, necessary
since, for some of the atomic electrons with u s < v, we may
have a s < b, in which case ionization occurs beyond the
limit of adiabatic cut-off (LAMB 1940) .

Relativistic treatments of the stopping of fast electrons, fo r
which always x « 1, have been given by BETHE (1932) and
especially by MØLLER (1932) . The corrections to formula (3 .2 .1 )
were found to be just the same as those to be introduced into (3 .1 .10)
for u ti c . This result is intimately connected with the fact that
the relativistic modification of the classical formula consists in
the addition of terms proportional to zi in conformity with al l
effects derived by means of the Born approximation . Moreover ,
the special quantum-mechanical features involving spin forces an d
exchange effects, which are of importance for the very violen t
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collisions, may here be disregarded, since they do not contribut e
to the most probable energy loss (cf. § 3 .4) .

Since, for x 1, we are outside the regions for the legi-
timate use of any of the approximation methods applied ,
the circumstance that (3 .2 .1) and (3 .1 .10) coincide so closely
for x = 1 must, of course, in some way be regarded a s
accidental . It was, therefore, of great importance for th e
scope of the theory that BLOCH (1933) succeeded i n
developing a treatment of the stopping problem which le d
to a comprehensive formula for d e E applicable for all value s
of x, provided only that a > us and b < a s . In the limit s
of small values of x, BLOCH's formula asymptotically
approaches (3 .2.1) while, for x » 1, it practically coincide s
with (3 .1 .10) . For intermediate values of x, it never differs
appreciably from the one or the other of these two formula e
which, therefore, are proved to supplement each other wit h
high approximation . This result is of special value because ,
in many of the most important applications, x will be neither
very large nor very small and, consequently, none of th e
previous deductions could claim great accuracy.

B LocH' s treatment rests upon a generalized impact para -
meter method in which the collisions are specified by th e
distance of the path of the particle from the nucleus of th e
atom. As regards the interaction of the particle with a n
electron bound in the atom, this procedure which reduce s
the collision to a one-body problem is, in fact, equivalen t
to the ordinary quantum-mechanical treatment in configura-
tion space, if only the transfer of momentum is small com-
pared with the total momentum of the incident particl e
(MOTT (1931) ; cf. also A . BoHR (1948)) . This specificatio n
of the encounters makes it possible, like in the classica l
treatment, to separate between distant collisions where the
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perturbing force is uniform over the atom, and closer colli-
sions the duration of which is short compared with atomic
periods .

While the distant collisions may, at any rate if b < a s ,
be treated as a simple dispersion problem it is permissible ,
as shown by BLOCH, to disregard the atomic binding force s
in estimating the average energy transfer in close collisions .
This circumstance allows an evaluation of d 5 E without any
detailed examination of the statistical distribution of th e
energy losses in individual collisions like that implied i n
the deduction of (3 .1 .10) and (3.2 .1) . Such an analysis is ,
however, required for the discussion of various other pene-
tration problems, in particular of the ionization effects .

§ 3.3. Statistics of Electronic Collisions .

In collisions between fast particles and atomic electron s
we meet, as we have seen, with two especially simple type s
which may be referred to as "free collisions" and "resonance
effects" , respectively. In the former case, we have essentiall y
to do with a two-body problem while, in the latter case ,
we are presented with a perturbation problem analogous t o
that met with in dispersion theory . Although, strictly
speaking, we are here dealing with limiting cases, it i s
possible, as we shall see, to a wide extent to classify th e
collisions into these two simple types and thereby to obtain
a general survey of the statistical distribution of the indivi-
dual energy transfers and, in particular, of the dependenc e
of this distribution on the charge and velocity of the inciden t
particle .

In order to specify the notations, we note that, if th e
duration of the encounter is considered as short compare d
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with the atomic periods and if, moreover, the energy trans-
fers to the electron are large compared with the ionizatio n
potentials, the influence of the atomic binding forces on th e
course of the interaction may, with high approximation, b e
disregarded. Under such circumstances, we may speak o f
free collisions in which the statistical distribution of the
individual energy transfers, T, will be given by (3 .1 .1) . A
main problem with which we are concerned will be t o
examine the region of T for which, under the variou s
circumstances, the conditions for the applicability of thi s
formula are fulfilled .

Simple resonance effects occur if the field exerted by
the incident particle is practically uniform over the atomi c
region and if, furthermore, its intensity is so weak that the
probability of atomic excitation or ionization in each en-
counter is small . Under these circumstances, the statistical
distribution of the individual quantum-mechanical transitio n
processes can always be obtained by the perturbatio n
method applied by BETHE, and his results may, therefore ,
be suitably adapted to the various possible cases including
those for which such a treatment is not valid for the pene-
tration problem as a whole . From the considerations in § 3 . 2
it follows, moreover, that, in this type of collision, the
average energy transfer determining the stopping effect i s
just the same as that obtained by a classical calculation
in which the atom is treated as an ensemble of harmonic
oscillators .

In order not to complicate the arguments, we shall in
the first instance disregard finer details of the atomic
structure and simply characterize the binding of the s th
electron by a cyclic frequency [us , related to the ionizatio n
potential Is by

Vidensk. Selsk. Math .-fys. Medd . XVIII, 8 .
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Is = hcos ,

and by a length as defined by

§ 3 .3-

(3 .3 .1 )

a s =----
h

,u us ' (3.3 .2)

where us represents the "orbital " velocity given by (3 .1 .7) .
While ,u us is of the same order of magnitude as the quantum -
mechanical expectation value for the momentum of th e
electron in its undisturbed state, a s represents the accuracy
with which the electron may be localized without the un-
certainty of its energy exceeding I S and will, for bindings
with effective quantum numbers comparable with unity, b e
a measure of the radial extension of the orbital region .

As already indicated in the preceding, the problem of
the electronic collision effects produced by fast particles
depends essentially on the value of the quantity x given by
(3 .2 .3), and it will be convenient to treat the cases x > 1
and x < 1 separately in order to bring out as clearly as
possible the differences as well as the conformities of th e
penetration problem in these two cases .

For > 1, the individual encounters between the incident
particle and a free electron can be approximately describe d
in terms of orbital pictures and, to the purpose of classifyin g
the collisions, we may apply the considerations in § 3 .1 . For
the impact parameter is corresponding to a free collision
with T = Is , we have from (3 .1 .9), by means of (1 .1 .4) ,
(3 .2 .3), and (3 .3 .2),

is = xas ,

 

(3.3 .3)

holding for v» us. For the adiabatic limit ds defined by
(3.1 .8), we have, from (3 .1 .7), (3.3.1), and-(3 .3 .2),
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U
ds =

w
= ns as ,

s
(3 .3 .4)

where

(3,3,5)

is a convenient abbreviation, Furthermore we hav e

ds
=2

as =
• -1 (3.3 .6)

as is seen from (3 .1 .9) and (3.3 .3)1 .
For x < yfs it follows from (3 .3.6) that is < ds , in which

case the collisions with p < is may be classified as "free",
since T > Is and since the duration of the interaction i s

short compared with 1 . According to (3 .3 .3) we have, more-

over, is > as , and encounters for which p > is are, therefore,
of the simple resonance type . To a first approximation the
contribution of the sth electron to the stopping will thu s
be given by the sum of two terms,

T
(ds E) t = NAR B s log Î-m

 

(3 .3.7)Is

(A S E) , . = NARB F log D ,

 

(3 .3.8)
s

representing the energy losses due to free collisions an d
resonance effects, respectively .

1) In the formulae with validity restricted to > 1, we omit the extr a
numerical factors to be introduced if the incident particles are electron s
since, in this case, for v )) vo, the value of x is always small compared
with unity.

and

6*
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The energy transfer in free collisions, thus, correspond s
to (3.1 .5), while the additional contribution to (3 .1 .10) is t o
be ascribed to resonance effects . Expressing the logarithmic
arguments in terms of ns and x, one finds by means of
(3 .1 .4), (3 .1 .7), (3 .2 .4), and (3.3.5)

§ 3 .3 .

Ds
and - ~2 x - 2

s

 

, (3 .3 .9 )

from which, in particular, it follows that (d s E) t is larger
than (dsE)r, for x > 1 . With increasing values of x, the
resonance effects give a decreasing contribution which, fo r
the sth electron, vanishes for x = ?7s .

If x> 74, in which case is > ds , the values of p for
which the collisions may be regarded as " free" no longer
extend to

 

since for p > ds the duration of the encounter

exceeds 1 . On the other hand, all interactions with p > dscos
will not be of a purely adiabatic character since, during th e
collision, the binding of the electron may be disrupted . This
is also directly indicated by the circumstance that, for
x > his, the displacement of the electron which during a
free collision is of the order of b is no longer small com-
pared with atomic dimensions, but may exceed a s , as is
seen from (3 .3.6) .

In order to estimate the limiting value ds of p, for which
the probability of ionization during the passage of th e
particle is still of the order of unity, we may, as effectiv e

duration for free energy transfer for p > ds , instead of E ,

take 1 . By a simple calculation, one thus obtain scos

(d:)2 = i-ds ,

 

(3.3 .10)
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holding for v > us and ds > b . For is = ds , this expression
gives d* = ds , and the two regions x < 27s and x >i are
thus joined smoothly together. The ionization processes out-
side ds may be compared with a so-called cold emissio n
by which an electron is pulled out of an atom by a stati c
field of force (LAMB 1940) . Due to the fact that C, as
follows from (1 .1 .4), (3 .1 .9), and (3 .3.4), is independent o f
v, such considerations give essentially the same results as
the above estimate based on arguments of dynamics .

Since, for p < ds*, the ionization process will take plac e
at a comparatively early stage of the encounter, the total
energy transfer will be practically the same as if the electron
were free. Denoting by Ds the energy transfer in a free col-
lision with p = ds , we therefore have, to a first approxi-
mation,

T
d s E = (dsE)f _ NdRB F log D~ ,

 

(3 .3 .11)
s

where, according to (1 .1 .10), (3 .1 .9), (3 .3 .6), and (3.3.10) ,

D* = ~s x-1 ,

 

(3 .3.12)

holding for T. »» Ds or «« td . For still larger value s
of x, where ds Z b, the whole problem is more intricate,
since the collisions will have a large probability of leading
to capture of the electron by the particle . Actually, the con -
tinual capture and loss of electrons along the path, a pro -
blem which we shall consider more closely in Chapter 4 ,
will in such cases be determining for the penetration effects .

For x < 1, classical mechanical ideas, such as orbits o f
the particles during the encounter, fail completely in ac -
counting for the individual collision effects . As mentioned
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in § 3 .2, the collisions may, however, still be specified by a
generalized impact parameter P equal to the distance of th e
path of the incident particle from the nucleus of the ato m
and definable with a latitude small compared with atomi c
dimensions. On this basis, we shall see that, also for x < 1 ,
a separation between "free" collisions and "resonance"
effects is possible in first approximation and that the tw o
cases correspond to collisions where the particle passe s
through and outside the atomic region or to P < as and
P > as , respectively .

In the case of close collisions between the inciden t
particle and an atomic electron, the problem is in essential
respects analogous to the scattering problem considered i n
§ 1 .4. Indeed, for u» us , the initial stage of the collisio n
may, in relative coordinates, be described by a wave
function which, over time intervals comparable with th e
duration of the penetration of the particle through the atom,
closely resembles that of a wave-packet of radial extensio n
as and moving with a well-defined velocity u . The limited
size of the wave-packet will obviously have a similar in-
fluence on the scattering as a screening of the field of forc e
between the colliding particles, of the type given by (1 .4.1),
for a ,- a s . Since X (« as , according to (1 .3 .2) and (3 .3.2),
the angular scattering distribution in relative coordinate s
will, thus, be of the type RQ (9), corresponding to the Ruther-
ford law for angles larger than O0. given by (1 .4.8) .

For the energy transfer we should, therefore, expect
a statistical distribution given by (3 .1 .1) for T > As" ,
where, according to (1 .1 .8),

/

 

1 2
A3 = Tm (~4 S)

 

(3.3 .13)\ 2/I
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as follows from (3 .1 .4) and (3 .3.2)1 . Since energy trans-
fers smaller than Is would, thus, be very improbable, i t
follows that the atomic binding forces can have no essential
influence on the distribution of T, and the collisions may ,
consequently, be classified as "free" . The contribution to
the stopping effect of collisions with P < as , therefore, ap-
proximately amounts to

T
(A s E) t = NARBE log j

 

(3 .3.14)
s

an estimate identical with (3.3 .7), holding for 1 < x < ns .
In the distant collisions where P > as , the force exerted

by the particle will be approximately constant over the
atomic region. Moreover, we are in such collisions dealin g
with a perturbation problem, corresponding to the fact that ,
for x < 1, we have is <as , according to (3 .3.3), and that ,
therefore, a classical calculation would lead to energy
transfers smaller than IS . In quantum mechanics we have
thus to do with typical "resonance" effects which will giv e
rise to an average energy transfer equal to that to be
expected from a classical interaction between the particle
and the atomic oscillators . The contribution to the stopping
effect of the collisions with P > as will, thus, b e

A'
(A s E)r = NARBE log Ds ,

 

(3.3.15)Ds

where As is the energy transfer calculated in classical me-
chanics for p = as .

1) It may be noted that (3 .3 .13), and consequently (3 .3 .14), holds als o
if the incident particle is an electron, in which case the value of Oa" s , de-

pending on the reduced mass, is doubled, while Tm is four times smaller .
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From (3 .3.13) and from (1 .4.3), and (1 .4.8), we have

As = Is xa (3.3.16)

and by means of (3 .2.4) we, thus, find

(4)(d s E)r = NdRB F log (3 .3 .17 )I
s

where, as usual, the bracketed italic factor in the logarithmi c
argument refers to the case of electrons as incident particles .

It will be seen that the sum of (3 .3 .14) and (3 .3.17)
just corresponds _to BETHE ' S expression for A, E in the sim-
plified form (3 .2.2) . While, as mentioned above, (d s E)r is
always smaller than (d s E)t for x>1, we see that for x < 1
the two contributions are essentially equal, in accordanc e
with the circumstance, already referred to in § 3 .2, that
HENDERSON 'S formula, in which the resonance effects wer e
not taken into account, gave an energy loss only about hal f
that obtained by BETHE .

For the illustration of the considerations in this para -
graph, a survey of the characteristic features of the statistica l
distribution of the individual energy losses for different
values of x is given in Fig. 7 . The cases marked I, II, an d
III correspond to different values of the charge of the incident
particle while, for the sake of comparison, the velocity v as
well as the strength of the electron binding characterized by
Is are taken to be the same in all three cases . Like in the
instructive diagrams used in similar problems by WILLIAM S

T
(1931), we have chosen as abscissa log T and as ordinate

the ratio between the actual differential cross-section for
energy transfers T and the equation (3 .1 .1), corresponding
to collisions with a free electron. This choice of coordinates
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implies in particular that, as follows from (2 .3 .4), the
contribution to d sE from collisions for which Ti < T < T 2
is simply proportional to the area between the curve an d
the axis of abscissa, limited by the ordinate lines corre-
sponding to Ti and T2 .

The diagrams I and II refer to problems for whic h

x> 1 . In I, the value of x is chosen larger than ?7, = 2 v and ,
us

thus, Ds > Is , in which case all the collision effects can, a t
any rate approximately, be treated on classical mechanics .
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This is indicated by the vertical hatching of the whole area
below the curve extending from Tm essentially to D: . In
the case illustrated, Ds « Tm , and the abscissa corre-
sponding to Ds is, therefore, about half way between DS
and Is , as follows from (3 .3.10) .

Diagram II represents the case 1 < x < 2-U , whereus
Is > Ds . The full-drawn curve again corresponds to the
actual distribution of T with the slight simplification that ,
in order not to complicate the figure, no distinction is made
between discrete resonance lines giving rise to atomic ex -
citation and ionization processes with T Is . The area
below the curve is separated into two regions correspondin g
to the distinction between free collisions and resonance
effects . As indicated by the vertical hatchings, the forme r
region may be accounted for by means of classical me-
chanics, while the horizontal hatchings indicate that the
resonance effects are proper quantum phenomena. The
broken curve represents the distribution to be expected i f
the energy transfers in all the individual collisions could b e
calculated by means of classical mechanics . Since, as men-
tioned above, such a calculation gives the correct result for
the total energy loss, the area characterized by broken ver-
tical hatchings will be just equal to the area representing th e
total energy loss in resonance effects and indicated by hori-
zontal hatchings although in part falling outside the figure .

Diagram III illustrates the case x < 1 . Mere, the whole
area below the full curve will, as indicated by the horizonta l
hatchings, correspond to effects which defy any unambiguou s
use of classical pictures . The broken curve gives the distri-
bution to be expected if classical mechanics could be applied .
In constrast to the case x .> 1, the area beyond T = Is re-

§ 3 .3 .
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presents an energy loss which is greater than the contribution
of the resonance effects, in accordance with the failure o f
the classical mechanical formula (3 .1 .10) for x < 1 . As
appears from the above discussion, it is, in fact, only th e
part of the area corresponding to DS < T < As and indicated
by broken hatchings which, according to dispersion theory ,
is equivalent to the contribution due to resonance effects .
The area corresponding to As < T <As = IS represents the
difference in the values for d sE given by formulae (3 .1 .10)
and (3 .2 .1) .

The diagrams in Fig. 7 clearly illustrate the relative im-
portance of the resonance effects for the different values o f
x. While, in III, the contribution of these effects to the tota l
energy loss just equals the contribution of the free collisions ,
it is shown by II how, for x > 1, the resonance effects ma y
be considerably less important for the stopping . In the ex -

treme case x > 2 U illustrated by I, there is no questio n
u s

of any simple resonance effects .
The considerations in this paragraph which, in the firs t

place, aim at a survey of the distribution of the individual
energy transfers in electronic collisions and of their de-
pendence on the value of x, obviously have a somewha t
qualitative character . In particular, it need hardly be em-
phasized that the distinction between free collisions an d
simple resonance effects involves a considerable latitude .
The high degree of accuracy in the estimate of the average
energy loss obtainable within a large region of x by the
treatment of BLoCH depends just on the possibility o f
avoiding such a distinction . In fact, as mentioned, it is i n
this treatment only necessary to separate between suc h
distant collisions, where the analogy to the simple dispersion
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phenomena is complete, and the closer collisions of duration
short compared with atomic periods, where the atomic forces ,
though determining for the distribution of the individua l
energy losses, have no influence on the average energy trans -
fer . In many other penetration problems, however, the detail s
of the distribution of the individual energy losses ar e
essential and the above analysis, which is more in line wit h
that of WILLIAMS (1932), goes essentially beyond the scop e
of BLOCH's treatment .

In particular, the distinction between free collisions an d
resonance effects allows, at any rate approximately, a n
estimate for all values of x of the number of ions produce d
along the path . Still, to this purpose, it is, of course, ne-
cessary to separate between resonance effects which resul t
in a removal of an electron from the atom and those whic h
produce only atomic excitation . Since, however, for th e
majority of the resonance effects, the duration of the col -
lisions will be short compared with the atomic periods which
are, moreover, for a given electron all of the same order of
magnitude, the relative transition probabilities will, to a firs t
approximation, be independent of the charge and velocity
of the incident particle. On this basis, we shall in the fol -
lowing paragraphs, by making use of the results of BETHE

deduce' d for x « 1, consider the ionization problems for al l
values of x .

An extension of the above considerations to velocities clos e
to that of light presents no essential difficulties. Since c = 137 v0 ,
it is seen from (3 .2 .3) that, for v ' c, we have always x 1 even
for the largest conceivable values of zl and, in considerations o f
the relativistic corrections to electronic stopping formulae, the
discussion may, therefore, be confined to such values of x . As
pointed out in § 3 .1 and § 3 .2, the retardation of the field of th e
incident particle will not appreciably affect the energy transfe r
in free collisions, but will primarily imply an increase in the
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adiabatic limit by a factor y. While, therefore, formula (3 .3 .14)
for the contribution to dsE from free collisions is substantially
correct even for v ' c, the contribution from the resonance effect s
given by (3 .3 .17) will be somewhat increased. Since an increas e
in d by a factor y implies a decrease in Ds by a factor y 2 , we have
thus

(dsE) r, = NdRB e log
((4Tm

Z)

 

(3 .3 .18)
s

approximately corresponding to the relativistic correction terms
in BETHE ' S and MØLLER ' S formulae . As regards the distribution
of the individual resonance processes on the various transition
possibilities, we may, for the same reasons as given above, us e
BETHE's calculations also in the relativistic region .

§ 3 .4. Penetration of High Speed Particle s
in Light Substances .

The treatment of electronic encounters indicated in . the
preceding paragraphs offers a basis for the estimate of stop -
ping and ionization effects of particles with velocities larg e
compared with the "orbital velocities" of the atomic elec-
trons in the materials penetrated . In light substances like
hydrogen and helium, where all the electronic velocities ar e
comparable with vo, the treatment thus covers the case o f
high speed particles for which v » vo . In the present para-
graph, we shall see that the various penetration effects may ,
under such circumstances, be simply analyzed by means o f
the distinction between free collisions and resonance effects
discussed in § 3 .3 .

As regards the average energy loss, the formulae may b e
comprehensively written

(d,E)f _ NdRBF
log 1 l41

ns
L?is

(3.4 .1 )

and
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(d c E)I, = NARB,

 

loges

 

(3.4 .2)
s

where square bracketing indicates that the quantity within
the brackets is to be replaced by unity, if smaller than 1 ,
and where the summation is to be extended over the variou s
electrons in the atoms which give a positive value for the
logarithm . With this notation the total energy loss may b e
written

d f E = NARB,

 

log {( 1 ) s []
-2

 

(3 .4.3)
s

 

[-]} .

As mentioned in § 3 .1 and § 3 .2, the value of d 5 E may, within
large regions of x, be calculated more accurately without
introducing a sharp separation between free collisions an d
resonance effects, but it may be noted that (3 .4.3), for
x < ns , practically coincides with BLocH's formula .

For v ti c, where is always smaller than unity, it follow s
from the arguments in § 3 .3, that, while (i E) t is not essentially
influenced by relativity effects, the contribution of the resonanc e
effects is, according to (3 .3 .18), increased t o

(4,E),. = NARB s.log~7sy 2 ,

 

(3.4.4 )
s

corresponding approximately to the formulae of BETHE (1932)
and of MOLLER (1932) . For large values of y, it must, however,
be taken into account (FERMI 1940) that the mutual interactio n
between the atoms (cf . § 3 .1) implies a reduction in the reso-
nance effects, whereby the stopping power becomes independen t
of the binding forces and is determined only by the electron den-
sity of the medium .

Like in the case of nuclear stopping, it may be of im -
portance also to consider the statistical distribution of .AE .
In particular, we shall examine the mean square deviatio n
Q determining for the so-called range straggling, which will
be more closely considered in § 5 .4. The first detailed

§ 3 .4 .
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treatments of this phenomenon were given independentl y
by FLAMM (1914 and 1915) and by BOHR (1915) on th e
basis of simple considerations of classical mechanics . As-
suming that the individual energy losses are distribute d
according to (3 .1 .1), one gets from (2 .3.5), by neglecting the
lower limit T1 in comparison with T2 = Tm and by sum-
ming over the z 2 electrons in the atom ,

,Q, = NARBE Tm z 2 , (3 .4 .5)

an expression which is especially simple, being independent
of v, according to (3 .1 .2) and (3 .1 .4) .

Since, also in quantum mechanics, the distribution o f
the individual energy losses will be given by (3 .1 .1) for large
values of T, formula (3 .4.5) must be expected to represent
a first approximation. In a more accurate estimate it shoul d
be taken into account (WILLIAMS 1932) that the distribution
of T is given by (3 .1 .1) only for T» IS , while the collisions
which, on classical mechanics, would lead to smaller energ y
transfers actually give rise to resonance effects in whic h
T ' Is . This problem has, for x < 1, been examined in
detail by LIVINGSTON and BETHE (1937) and the treatment
has been extended to all values of x by TITEICA (1937 )
by means of the Bloch method . The corrections to (3 .4 .5)
are, however, small and, since the additional terms ar e
of higher order in ?s 1 , they would hardly seem to go. much
beyond the degree of approximation obtainable by presen t
methods »

1) Note added in proof : It is in this connection of interes t
that, while earlier determinations of a-ray straggling gave va -
lues for Q somewhat larger than (3 .4 .5), recent investigations of
proton straggling (C. B. MADSEN and P. VENKATESWARLU, Phys .
Rev., in press), based on the measurement of the broadening o f
nuclear resonance curves have given results in close agreemen t
with the simple formula .
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In considering the statistical distribution of the energ y
losses dr.E, we may proceed in quite the same way as in
the discussion of nuclear stopping effects in § 2 .4. The only
alteration in the corresponding formulae consists, in fact ,
in the replacement of the single logarithmic term in d,,E
by the sum of such terms in A sE . In the case of heav y
incident particles (m l »» m 2 = ,u), we may, therefore, con-
clude that, for not too small fractions of the range, th e
energy losses in electronic collisions will be distributed ac-
cording to a simple Gaussian law with half width Ds . If ,
however, the incident particles are electrons, the distributio n
will be of a more complicated character and will consis t
essentially of an approximately Gaussian peak and a tai l
extending far beyond the width of the peak . Introducing ,
in complete analogy to the considerations in § 2 .4,

§ 3 .4 .

T* = NdRBf z 2
one finds

(3 .4 .6)

dfE = NARB E

 

log~ 4 ns7 * l
(3 .4 .7)

m
and

(d2:)2 = NdR B f z 2 T *

 

(3 .4.8)

for the most probable energy loss df E and the width dl,
of the Gaussian peak .

A simple survey of the ionization phenomenon may like -
wise be obtained by separating between free collisions an d
resonance effects . The contribution of free collisions which,
according to their definition, all lead to ionization is given
by the Thomson formula (3 .1 .3), provided x < ns . For
larger values of x, the number of free collisions is obtaine d
by integrating Nd R d ci from DS to Tm . Neglecting higher
order terms, we thus have for the number of ions
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x t

(w I) 1 = Nd RBF

 

Îs
I S

 

(3 .4.9)

As regards the resonance effects, it follows from the narro w
distribution of T around Is , as indicated in Fig . 7, that the
combined number of ionization and excitation processe s
involving the sth electron will always be close to (4 s E)r
divided by I, . For the number of ions, we may thus write

(w I ), = NARB,

 

ds
. 1 log (74 N -2), (3 .4 .10)

where ås is a numerical factor . The value of ås depends
on the distribution of the resonance effects over the ex -
citation and ionization states and is, therefore, as follows
from the arguments in § 3 .3, to a first approximation in -
dependent of the charge and velocity of the particle and ,
in particular, of x .

For hydrogen atoms, BETHE (1930) has calculated å to
be 0.28 and has also attempted an estimate of the ionization
for atoms containing several electrons, with special reference
to the influence of their mutual coupling . Since, however ,
the deviations from the Coulomb field due to the electronic
screening are neglected, these latter estimates are only of a
cursory character . This point has been recently stressed by
FANo (1946), who has shown that ås may depend ver y
essentially on the screening . In particular, FANO finds that ,
for the most loosely bound electrons in the atom, whic h
contribute primarily to the ionization, the variation in å s
will approximately compensate the considerable differences
in Is . Thus, a basis was obtained for an explanation o f
the remarkable similarity of the ionization phenomena i n
different substances of widely different minimum ionizatio n
potentials .

Vidensk. Selsk ., Malh .-fys . Medd . XVIII, 8 .

 

7



98

 

Nr. 8. NIELS Bons :

For the total number of collisions leading to ionizatio n
we get, from (3 .4.9) and (3.4.10),

(( ll
1

~s ~ L~S1
+ 2 as log (ns [x] -1)l .

It is of interest to point out that while, due to the contribution
of the resonance effects, the ionization may, for x << ,
be several times larger than given by the Thomson formul a
(3.1 .3), this latter formula should be very nearly correct fo r
x ti n which, as we shall see, corresponds to the case of
fission fragments over a considerable part of their range .
For x~~ , the ionization should be essentially less than
given by (3 .1 .3) .

For v ti c, where always x < 1, it follows from the argument s
in § 3 .3 that the only correction to (3 .4 .11) arises from the increase
in (L1E)r as given by (3 .3 .18) . We thus hav e

w I ~ Nd RBF

 

1s
(1 + 2 ss log ?7s y) (3 .4 .12)

which, for hydrogen, corresponds to the expression derived by
MØLLER (1932) .

As regards comparison of the ionization formulae wit h
experiments, it is usually impossible directly to discrimi-
nate between the primary ionization consisting in the ex -
pulsion of electrons in collisions with the incident particle ,
and the secondary ionization produced by the electrons ex-
pelled with an energy greater than the lowest ionizatio n
potential of the substance . Electrons with such energie s
practically only originate from the free collisions but, of
course, in the ionization they produce, resonance effects a s
well as free collisions must be taken into account. An ac-
curate estimate of the secondary ionization presents a very
complicated phenomenon which can be treated only ap -

§ 3 .4.

wI =Nd RB, (3 .4 .11)
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proximately on present theories, since a considerable par t
of the effect will be due to collisions between atoms and
electrons with velocities of the same order of magnitude as vo.

An analysis of the phenomenon has been attempted by
BETHE (1930), WILLIAMS (1932), BAGGE (1937), and espe-
cially by FANO (1946), who found it possible to account fo r
the experimental result that the total ionization correspond s
to an energy expenditure per ion between 30 and 40 electron
volts, approximately independent of the substance . This
quantity must also be expected to vary only very slowl y
with the charge and velocity of the incident particle, althoug h
it may depend somewhat on the relative importance of free
collisions and resonance effects for the primary ionization .
In particular, it must be noted that the average energy ex-
penditure per ion may not be quite the same for fissio n
fragments as for fast a-particles, due to the much smalle r
contribution of resonance effects in the former case . Some
indication that the differences are only comparatively smal l
has, however, been obtained by LASSEN (1946), who has
shown that the ratio between the ionization per energy los s
in different substances is closely the same for fission frag-
ments as for a-particles .

§ 3.5. Penetration of High Speed Particles
in Heavy Substances .

The problem of the interaction between swift particles
and heavy atoms is of a more intricate character than the
penetration problems in light substances discussed in the
preceding paragraph . Not only would a detailed analysis o f
the atomic oscillators be highly complicated, but even for
v » vo the orbital velocities of the most firmly bound elec-

7*
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trons may be comparable with or exceed v, in which cas e
the simple theory discussed in the preceding no longe r
applies . In case of x < 1, a thorough discussion of the avail -
able experimental material has been given by LIVINGSTO N

and BETHE (1937), who developed semi-empirical formula e
and, in this connection, have also given a theoretical treat -
ment of the contribution to the stopping power of atomi c
electrons with us j v.

An interesting attempt has been made by BLOCH (1933a)
to obtain a comprehensive stopping formula by comparin g
the atom, in the distant collisions where the atomic constant s
are of importance, with the simplified model of a Thomas -
Fermi gas . While this procedure may be appropriate fo r
velocities exceeding the largest values of us , it is more difficult
to apply to smaller velocities . For the present considerations ,
which primarily aim at bringing out the dependence of th e
penetration effects on the charge and velocity of the particle ,
we shall, therefore, attempt, on the basis of the formulae o f
the preceding paragraphs and by means of a simple mode l
of the atom, to give approximate expressions for the stoppin g
power of heavy atoms, covering all values of x . In particular ,
such estimates should be suited for the comparison betwee n
the stopping effects of fast a-rays for which x < 1 and of
fission fragments for which x is essentially larger than unity .

In the estimate of the distribution of the electronic velo-
cities us which enter into the formulae of § 3 .4, it is con-
venient to write

§ 3 .5 .

*zs
us = -vo ,

vs
(3 .5 .1 )

where zs is a measure of the strength of the field in th e
region in which the electron is bound, as compared with
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the field of a hydrogen nucleus, and where vs is the so-
called effective quantum number . In the case of heavy
atoms, the most firmly bound electrons belonging to th e
shells K, L, etc . move in a field which is approximately
Coulombian with zs ti z 2 and have values of vs very nearly
equal to 1, 2, etc ., respectively ; furthermore, the mos t
loosely bound electrons for which zs ' 1 again have value s
of vs of the same order as unity . Over a large intermediat e
region, however, vs will have a flat maximum correspondin g
to values close to z2' , a result which is in conformity with
the analysis of the electron binding by the Thomas-Ferm i
statistical method .

Since zs approximately represents the number n(u s ) of
atomic electrons with velocities smaller than u s , we have thu s

n (us) ti zz' -us ,

 

(3 .5.2)
0

holding for vo < us < z2' vo . For values of us outside thi s
region, we must for n use some function of z 2 and us which ,
for us « vo, is of the order of unity, while it approaches z 2
for us ti z 2vo . In order, however, to avoid complications, we
shall in the present survey confine ourselves to the simple ex -
pression (3 .5 .2) and postpone the question of its limitations t o
the discussion of special problems in the following chapters .

As regards the stopping effect, we may first consider the
more simple expression for the contribution of resonanc e
effects . Thus, from (3 .3.5) and (3 .4.2), we get

(4,E), = 2N AR B E ~ log{ ûU [x]-~~ dn(u s) . (3 .5 .3 )
l s

In evaluating this integral we may, in first approximation ,
use the simple expression (3 .5 .2) and integrate from us = 0
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§ 3 .5.

to the value of us for which the logarithm vanishes. For
the more firmly bound electrons, for which the respective
terms in (3.5.3) no longer apply, the contribution to th e
stopping power will, for heavy atoms, be of only minor
importance, provided v») vo. We thus get

(dE E),. = 2 NdRBf n, [x]-1,

 

(3.5.4)

where
=/° 2 v

ne = Z2 ' ~ ,
0

(3 .5 .5)

according to (3 .5.2), may be regarded as a measure of
the number of atomic electrons effectively involved in the
stopping phenomenon.

The contribution of free collisions to the stopping effec t
may be estimated from (3 .4 .1) . Confining ourselves to the
case of penetrating particles of mass large compared with
that of the electron, one finds by integrating, for x < 1 ,
from us = 0 to us = 2 v, while, for x > 1, the integratio n
has to be performed in two parts, from 0 to 2vx -1 and
from 2vx-1 to 21)x-11° (cf . p . 85) ,

(A ,E) t = NLRBEn, (3 [x]-'I°- [x] -1)

 

(3.5.6)

and, by adding (3 .5.4), one obtains

(A C E) = NdRBf nf (3 [x]_ 11° +

 

(3.5.7)

for the total energy loss .
It is interesting that, in spite of the cursory character o f

the considerations, formula (3 .5.7) gives, for x< 1, a depend-
ence of A,E on v and z2 which corresponds approximately
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to the observations regarding a-rays for which the stopping
power in hea'y materials, over a considerable energy interval ,
is roughly proportional to v - l and to a power of

x2
which

does not differ much from 1 /3 . Even if the numerical values
of (3 .5 .7) cannot be expected to be very accurate, we should
thus be justified in using the expression in comparing th e
stopping power for a-rays and fission fragments .

As regards the relative contribution to the stopping, o f
free collisions and resonance effects, we further notice that,
while for x < 1 the two contributions are, of course, equal,
the free collisions rapidly become dominating for x > 1 in
an even more pronounced manner than in light substances .
Thus, for x = 8, corresponding approximately to the case
of fission fragments over a large part of the range (cf. § 5 .3) ,
the contribution of the resonance effects will amount to onl y
about 15 °/D .

For o c, modifications in the above formulae are necessary .
Not only must relativistic corrections be included, but the pro-
cedure on which (3 .5 .7) is based is no longer justified, since, fo r
very large values of us , we are outside the scope of the simple
estimate (3 .5 .2) . In this velocity region, the analysis of BLOC H
(1933a), referred to above, should be more adequate and it is of
interest that essentially the same results may be obtained fro m
simple relations, somewhat more general than (3 .5 .2), for the
dependence of n on us and z2. By such a procedure (A . BOH R

1948), it is also possible to estimate the influence of the atomic
interaction (cf. p . 72) which, for very large values of y, become s
determining for the stopping effect .

For the mean square deviation of 4,E, determining for
the straggling, we get, instead of (3 .4.5) holding for light
materials,

S~É ti NdRBeTmn F k] -'I',

 

(3.5 .8)
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since n E [x] _
11' represents the approximate number of elec-

trons which contribute essentially to the energy loss in fre e
collisions, as follows from the considerations leading to
(3.5 .6) .

An estimate of the ionization effects may, of course, b e
attempted on similar lines but, since, in contrast to th e
stopping and straggling, the ionization depends primarily on
the most loosely bound electrons in the atoms, we are outsid e
the proper region of applicability of the simple approxi-
mation procedure .

In all the estimates in this chapter, the particle velocity
v has been assumed to be large compared with uo . For lower
velocities, however, where v -< vo, an estimate of penetratio n
effects presents great difficulties and, in particular, th e
phenomena become complicated due to the influence of th e
processes of electron capture and loss by the inciden t
particle . These processes will, in fact, not only be determinin g
for the effective charge of the particle in collisions with atomic
electrons, but will for decreasing velocities in themselves
constitute an essential source of energy transfer . To these
questions we shall return in connection with the discussio n
of the capture and loss phenomena in Chapter 4 .

§ 3 .5 .
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CHAPTER 4 .

Capture and Loss of Electrons i n
Atomic Collisions .

§ 4.1. Survey of the Problem .

The first evidence of capture of electrons by high spee d
particles in passing through matter was obtained by HENDER-

SON (1922), who observed that å beam of a-rays contain s
a fraction of singly charged particles which increases
rapidly with decreasing velocity. This phenomenon was
examined in greater detail by RUTHERFORD (1924), who
showed that, over the whole range of the a-rays, con-
tinual capture and loss of electrons take place, and was
even able to measure the frequency of the separate processe s
along the different parts of the range . Thus, the effectiv e
cross-section al for electron loss in air was found to var y
approximately as the inverse velocity, while the cross -
section for capture a, varied roughly as u -s. Moreover, the
ratio between the probabilities for capture and loss was
estimated to be approximately the same for all substances
examined .

In contrast to electron loss which can be compared with
a simple ionization process, electron capture is obviousl y
a more complicated phenomenon involving the interactio n
of at least three particles . A theoretical treatment of this
phenomenon was first attempted by FowLER (1924), who
compared the balance between capture and loss of electrons
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by a-rays with a thermodynamical equilibrium betwee n
He ++ and He+ in an electron atmosphere of a temperatur e
corresponding to an average electron velocity equal to v ,
and a density comparable with that of the electronic distri-
bution in the atoms . Although such considerations were
found to be in suggestive agreement with the experimenta l
results, the comparison with a thermodynamical equilibriu m
cannot be upheld in detail, especially as regards the inter -
action between an a-particle and light atoms in which the
orbital electron velocities are small compared with v . In
fact, in this case, the velocities of the electrons relative t o
the a-particle will all have practically the same direction ,
in contrast to the requirements of a thermal distribution .

A closer examination of the mechanism of the captur e
process also shows that the influence of the mutual inter -
action of the electrons in the atom on the capture pheno-
menon will be only small compared with the effect of th e
momentum changes which take place in the nuclear field .
Preliminary considerations of a qualitative character (BOHR
1925) indicated, in particular, that the balance betwee n

capture and loss should be essentially different in the lightes t
and in heavier substances . This was verified by JACOBSEN

(1926), who found that v~ for high speed a-particles in

hydrogen was vanishingly small compared with 6, in air ,
while ei in hydrogen was of the same order of magnitude
as in other substances and could be determined with con-

siderable accuracy. A detailed theory of electron capture
by a-rays in light and in heavy substances was develope d
by THOMAS (1927) on the basis of classical mechanics and ,

after the development of quantum mechanics, the captur e

problem was reconsidered by OPPENHEIMER (1928) and
especially by BRINKMAN and KRAMERS (1930) . The difference

§ 4.1 .
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between the results of the latter authors and of THOMAS

illustrates again, as we shall see, in a characteristic manne r
the scope of the different approximation methods in atomi c
mechanics .

In the following paragraphs, a general survey of electron
capture and loss by penetrating particles will be attempted
with special regard to the dependence of the phenomen a
on the charge and velocity of the particles . To this purpose,
we shall first consider the case of a-rays in various stoppin g
materials and, thereafter, discuss the problem of the balanc e
between loss and capture by highly charged particles passing
through matter . The latter problem is of particular interest
in connection with the behaviour of fission fragments which ,
over the whole range, carry a considerable number of boun d
electrons which steadily increases as the fragment is slowe d
down. The effective charge in electronic collisions, therefore ,
varies essentially along the path with the result that th e
range velocity relation of fission fragments exhibits peculia r
differences from that of lighter particles .

§ 4.2. Cross-Section for Electron Loss by Light Nuclei .
The problem of electron loss presents, as already men-

tioned, a close similarity to the ionization by high spee d
particles and may be treated on the lines of the considerations
in Chapter 3 . The analogy is particularly clear if we consider
the system of reference in which the a-particle is at rest an d
subjected to the bombardment of the atoms in the stopping
material . The problem is especially simple in hydrogen an d
helium, where the orbital dimensions öf the atomic electrons
are larger than or comparable with the radius a s of the
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bound state of the electron round the a-particle . In fact, in
this case we may, in close collisions where the atoms pe-
netrate each other, consider the ionizing effects of the atomic
particles approximately independent of each other . For velo-
cities large compared with uo we have x < 1, and thus ,
according to the considerations in § 3 .3, the collisions i n
question just constitute the so-called "free collisions" (P < as
(cf . p . 86)) in which the binding forces may be disregarded .
In more distant collisions (P > a«), however, where th e
atoms pass outside the region of the electron bound by th e
a-particle, the effects of the individual atomic particles in
the neutral atom will to a large extent compensate eac h
other. The "resonance effects" which, just in the case o f
x < 1, contribute the larger part of the ionization processes
produced by a single charged particle will, therefore, her e
be of only minor importance .

With the notations of Chapter 3, we thus have to a firs t
approximation

Qi

 

N AR ~ ( w I)t '

 

(4.2.1 )

where the sum refers to the effects of the nucleus and the
electrons in the atom of the stoppingamaterial . From (3 .4 .9)
and (3 .1 .2) we consequently ge t

ai

 

2 (zZ

 

1
--z2, ) =

 

,

 

(4 .2 .2)
"i v

where I is the energy required for the removal of the electro n
from the particle, and z 2 is the atomic number of the sub -

stance penetrated . Putting I = 2 ,uz 2 uå , and introducing a ô

from (2i .1) as a convenient measure of the cross-section ,
(4 .2 .2) may be written, by means of (2 .1 .5),

§ 4 .2 .
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al = 4nao zi
2

( z2+ z2) (UU 1
G .

 

(4.2 .3)

In the case of a-particles (z 1 = 2) in hydrogen (z 2 = 1) ,
we find

) 2

al = 2 ~ aô U ,
\. v

(4 .2 .4)

an expression which agrees satisfactorily with the empirical
data . Thus, JACOBSEN (1926) found for v ti 8 v ° a mean
free path for loss of about 6 • 10 -3 cm at N .T.P., corre-
sponding to al = 3 • 10 -1s cm2, while (4 .2 .4) give s
o

 

2.5 . 10 13 cm2
For stopping materials of higher atomic numbers, wher e

for the most firmly bound electrons as < aa , these electrons
and the nucleus will, even in close collisions, no longer ac t
independently on the electron carried by the a-particle, bu t
the total effect will more resemble that of a screened nuclea r
field, with the resin} that al will be considerably smaller
than given by (4.2 .3) . The inadequacy of this formula fo r
very large values of z 2 is also evident from the circumstanc e
that ai would become large compared with atomic dimen-
sions . In the limiting case of large z 2 , an estimate of al is
especially simple, since the field inside the atom will be s o
intense that almost any collision in which the a-particl e
penetrates the atomic region will, if only v» v° , lead to
the removal of the bound electron . In such cases we must ,
therefore, expect a value for a l of the same order as zca ô
and largely independent of z 2 as well as of v .

For intermediate values of z 2 , a closer analysis of th e
effect of the atomic field is necessary . Here, we have a
problem related to the questions of excessive screening,
discussed in § 1 .5 and also referred to in § 2 .1 in connection
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with the scattering of fast electrons in nuclear collisions . In
the present case, it follows from (2 .1.9) that, for instanc e
for air (z 2 8), we have C -, i for v « 6 v °. For such values
of C, the deflection field may in the determining region b e
compared with a potential of the type (1 .5 .5) for n = 2 ,
corresponding to a screening potential (1 .4.1) in the region
around r = a = a°z2-11 ' . For the value of k we thus have,
according to (1 .5 .6),

§ 4 .2 .

~
k = e -l z2 's 2 a° . (4.2 .5)

As discussed in § 1 .5, the deflection in such a field may be
treated by means of classical mechanics as regards angle s
larger than the value (1 .5.2) which may be writte n

= 2' v
(4.2 .6)

For our purpose, it is of importance to compare this angle
with the deflection 1 I corresponding to an energy transfer

equal to the ionization energy I = -,uzi vô . From (1 .1 .8 )

we have, assuming z 1v° < v,

v °
Øl = zl v , (4 .2 .7)

which shows that, for z 1 z2', we may approximately ac-
count for the ionization processes by means of classical
mechanics .

For the cross-section for loss, we may thus writ e
aI - ßi2, where i is the impact parameter corresponding to

= VI and find, by means of (1 .5 .7), (4 .2.5), and (4 .2 .7) ,

61 -, zaå z2' zl-
l () .

 

(4.2 .8)
U
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It is of particular interest that this expression varies lik e
- 1
v just as RUTHERFORD found for a-rays in air over a

large part of the range . For v 8 vo, RUTHERFORD obtained

a mean free path for loss of 0 .011 mm at N.T.P., corre-

sponding to al = 1 .6 • 10 -17 cm2, while formula (4 .2 .8) give s
a1 ti 2 • 10 -i' cm2. In view of the approximations involve d
in the calculations, the agreement may be considered to
be satisfactory .

§ 4.3 . Cross-Section for Electron Capture by a-Particles .
While electron loss is essentially a two-body problem ,

the electron capture presents us, as already stressed, with
a phenomenon in which energy and momentum are ex -
changed between at least three particles . In a treatment of
the problem on classical mechanics (THOMAS 1927), the
electron capture in light substances was described as a

double process ; the first part being a collision between th e
incident particle and an atomic electron, in which the fatte r
obtains a velocity of the magnitude v, and the second part
being a collision of this electron with the atomic nucleus ,

resulting in a deflection after which the electron velocity

also in direction coincides closely with that of the capturin g

particle . Since in each of these processes we have to do
with large angle deflections, one might have expected that

such a calculation would give essentially correct results, eve n

if the quantity is small compared with unity, and classical

pictures, therefore, are inadequate in analyzing the details

of the collision .

It must be realized, however, that in the capture pheno-
mena we have not simply to do with two separate collisions
the individual effects of which, as in the problems discussed
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in Chapter 1, are defined by the wave-functions at larg e
distances from the scattering centre . On the contrary, electron
capture presents us with an intricate collision process for
the result of which the interference of the scattered wavelet s
during the overlapping of the atomic fields may be decisive .
In fact, as shown by BRINKMAN and KRAMERS (1930) in
their detailed treatment of this phenomenon by means of
BORN ' s approximation, the probability of capture is negli-
gible, except in collisions where the two nuclei pass eac h
other at distances comparable with the wave-length A corre-
sponding to an electron with velocity v . It is, therefore, not
surprising that their calculation gives a dependence of v ,
on the charges of the nuclei and on their relative velocity
which differs essentially from that obtained by means o f
classical mechanics .

For the cross-section for capture by a nucleus z 1 of an
electron bound to a nucleus z2i BRINKMAN and KRAMER S

derived an expression which, for v large compared with th e
orbital velocities z1 vo and z 2 va, may be approximately written

§ 4 .3 .

58

 

(

v

Vo
12

 TL a~ zl z
2

(4.3 .1 )

For smaller velocities, the calculation cannot claim any
considerable accuracy, since the approximation procedur e

is justified only if the quantities x 1 = 2z1 Û° and x 2 = 2 z 2 Û°

are small . The very rapid variation with v implies that ar,

becomes extremely small for v» vo and, therefore, explain s
the negative results of JACOBSEN'S attempt to measure the
cross-section for high speed a-particles in hydrogen .

For particle velocities of the same order of magnitud e
as the orbital velocities of the electron before and after its
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capture, neither classical mechanics nor the Born approxi-
mation can yield accurate results. Still, for xl ti x2 ti 1, the
calculations of THOMAS as well as those of BRINKMAN and
KRAMERS give, as might be expected, values for the captur e
cross-section of the same order of magnitude as the orbita l
areas. In such cases, the cross-section for capture will b e
comparable with the cross-section for loss, and the particl e
will during a considerable fraction of its path carry a bound
electron . This is in agreement with experiments on slo w
protons or a-particles in hydrogen or helium which, fo r
velocities of the order of magnitude of vo, have proved tha t
the mean charge of the particles differs essentially from on e
and two units, respectively.

Recently, a discussion of these measurements has bee n
given by KNIPE and TELLER (1941), who have attempted
from the empirical values of the mean square of the particle
charge to estimate the corrections which, on account of th e
capture phenomena, are to be introduced into the stoppin g
formulae for slow a-particles or protons . In the application
of such corrections it must, however, be remembered no t
only that the approximations used in the deduction of th e
stopping formulae are not valid for v -- vo, but also that
the capture processes themselves under such circumstance s
constitute a considerable source of energy transfer .

For electron capture by a-particles in heavier substances ,
estimates of a, have been attempted by THOMAS (1927) on
classical mechanical calculations, and by BRINKMAN and
KRAMERS (1930) . Although both mothods gave approximate
agreement with the experimental results, such more de -
tailed calculations cannot claim great accuracy . In fact ,
the main contribution to the capture in heavy atoms con-
taining electrons of widely different binding energies wil l

Vidensk . Selsk ., Math .-tys . Medd ., XVIII.8 .
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be due to the electrons with orbital velocities comparabl e
with v and, just in this case, the capture process can neithe r
be followed in detail by means of classical pictures nor b e
rigorously treated by means of the Born approximatio n
method . For the sake of the following discussion, it is in-
structive, however, to show how a qualitative estimate o f
ae may be obtained by simple statistical considerations .

To this purpose, we note that electrons with orbita l
velocities u ti v, due to the action of the atomic field, will
be subjected to a momentum change comparable with ,u v
within a time interval corresponding to the passage of th e
particle through the orbital region. Accordingly, the velocity
change which in lighter atoms demands a special doubl e
collision may here result from any collision in which a n
energy of the order 1 / 2 ,u v2 is transferred to an electron of
orbital velocity comparable with v . Now, quite independently
of the value of x, the cross-section for such collisions will ,
according to (3 .1 .1) and (3 .1 .2), approximately be given b y

§ 4 .3 .

4zr aåzi( V0 4 . (4 .3 .2 )

Since the dimensions of the atomic region occupied by the
electron of orbital velocities u -- v will be small compare d
with the orbital radius a1 = aozl-1 of the electron after
capture, the probability f that capture results from the firs t
collision will, therefore, be of the same order of magnitud e
as the fraction of the velocity space corresponding to velo-
cities relative to the incident particle comparable with zlvo o r

3
f i(Û00 ) . (4 .3 .3)

Further, for v » vo, the number n of atomic electrons with
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orbital velocities u comparable with v (say, 2 v< u < 2 v)

is approximately, according to (3 .5 .2) ,

n = z'I° ( v \
2 -vo /

and, consequently, we get

(4.3 .4 )

6
2 5 ' /s U Oa~ ti afn ti 4na0 zi z2

 

.
U

 

(4.3.5)

This simple estimate is in agreement with RUTHERFORD'S
results that a, for a-particles in air is nearly proportional t o

v -6 . Moreover, for a-rays with v = 1 .8 •109 cm sec- 1ti 8vo ,

RUTHERFORD found a mean free path for capture in air at

N .T.P. of 2 .2 mm, corresponding to a, = 8 . 10-20 cm2, while

an estimate based on (4.3.5) gives a, ti 10 -19 cm2. The clos e

agreement is, of course, more or less accidental, in view

of the cursory character of the approximations . It is, further -

more, of interest to note that, compared with the estimates o f
al in § 4.2, formula (4 .3.5) gives a value for the ratio be-

tween a, and al which varies only slowly with z 2 in heavier

substances, in conformity with the observations .

§ 4.4. Balance between Electron Capture and Los s
by Highly Charged Particles .

While, over the major part of the range, high spee d
protons or a-particles only seldom carry an electron, th e
situation is entirely different for heavy nuclei like fissio n
fragments which, even at the beginning of their range, carr y
a large number of bound electrons . This difference is at
once explained by the circumstance that such highly charge d

8*
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nuclei are able to bind electrons in states with orbital velo-
cities u greater than even the initial values of the particl e
velocity v. In fact, in collisions with the atoms of the stop -
ping material, the removal of electrons with u » v is impos-
sible or at any rate very improbable, while the less firmly
bound electrons are readily removed in such collisions . As
regards capture, the situation is reversed . Whereas, in atomic
collisions, electrons are easily captured into states of orbital
velocities u v, capture of electrons into states for whic h
u << v is a -process which, generally, is very improbabl e
compared with loss . Without any detailed estimate of th e
cross-section for capture and loss, we may, therefore, con-
clude that highly charged nuclei on the average carry a
number of bound electrons approximately corresponding to
the number of electrons in the neutral atom for which u > v .

In a preliminary discussion of the stopping problem s
for fission fragments (BOHR 1940 and 1941), it was shown
that the general trend of the range velocity curves could b e
accounted for by an estimate of the effective charge number
zi based on such assumptions . Similar views were used by
LAMB (1940) who identified zi with the charge number o f
the ion formed by the removal of all electrons with binding

energies less than 2 ,u v2 . A simple, comprehensive formul a

for zl (BOHR 1941) is, according to (3.5.2), given by

§ 4 .4 .

*

 

Va v
zl

 

z v0
(4.4 .1 )

applying to particle velocities in the region vo < v < z7'vo .
On the basis of a more detailed examination of the velocit y
distribution of the atomic electrons by means of the Thomas -
Fermi method, KNIPP and TELLER (1941) and BRUNINGS,
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KNIPP and TELLER (1941) have attempted a more accurate
determination of zi, involving a closer estimate, by mean s
of semi-empirical methods, of the ratio between the particle
velocity and the orbital velocity of the most loosely boun d
electrons in the ion. As the authors themselves emphasize,
however, the very assumption of a critical orbital velocity ,
for which capture and loss balance, involves in itself a
considerable element of arbitrariness .

The first direct measurement of the charge of fission
fragments was obtained by PERFILOV (1940) who, from
the curvature of the paths in a magnetic field, estimate d
the initial charge numbers to be about 20 . Since, for th e
two main groups of fission fragments from uranium, z l i s
about 38 and 54, and the initial velocity of the order o f
6 vo and 4 vo, respectively, PERFILOV'S estimate agrees ap-
proximately with (4 .4 .1) . A more detailed study has recently
been performed by LASSEN (1945 and 1946), who was abl e
to measure the charge of the two groups separately and als o
obtained information concerning the variation of zi along
part of the range . The initial charge numbers were found
to be 20 and 22 for the light and the heavy group, respect-
ively . These values are again of the order of magnitude o f
the estimate (4 .4.1) although, from this simple formula ,
slightly higher values for the light than for the heavy grou p
were to be expected (cf . LASSEN 1945) . The experi-
mental results are, however, readily explained by the fac t
that, at the beginning of the range, the lighter fragments
are stripped by more than half the electrons in the neutra l
atom and that, therefore, we are in a region where the effectiv e
quantum numbers of the atomic electrons can no longer b e
considered to have a constant value close to z 'l ' (cf. p. 101) .
This circumstance also explains the observation by LASSEN
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that the variation with velocity of zl for the light fragment
at the beginning of the range is slower than corresponding

to (4 .4.1) .
In Chapter 5, we shall discuss the range velocity relation

for fission fragments in some detail and, in particular ,
investigate what information regarding the effective charg e
of the fragments may be derived from range and ionizatio n
measurements . As we shall see, the experimental result s
agree reasonably well with the dependence of z* on zl and
v. to be expected from the simple arguments here indicated .
Although this dependence is found to be closely the sam e
for all stopping materials, there is still some indication that
zl for a given velocity is slightly higher in the lightest sub-
stances, a point which may be explained on much the sam e
lines as the anomalous behaviour of a-particles in hydroge n
as regards electron capture . To investigate this point it i s
necessary, however, to look into the problem of the balanc e
between capture and loss somewhat more closely than i n
the approximate estimate of zi .

As regards light substances, we may apply the consider-
ations of § 4 .2 and § 4 .3 . Thus, in analogy to (4 .2 .2) and
(4.2 .3), one finds

6l ^ 4na2z2 Û
J

3

 

(4.4 .2 )

when taking into account that the removable electrons ,

numbering approximately z'f' a , have ionization potential s
v p

of the order of 2
,u v2 . In estimating i, , use may be made

of the principle of detailed balance according to whic h
the cross-section for a transfer of an electron from one io n
to another, in specified quantum states, must be the sam e
as the cross-section for the reverse process, as illustrated
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from the symmetry of the expression (4 .3.1) . It is true that
the capture of an electron by a heavy ion from a light atom
is not the direct reversal of the capture process by a ligh t
ion in collision with a heavy neutral atom. Still, the lack
of outer electrons in the ion mainly implies an increase i n
the number of empty states into which the electron can b e
captured, and this effect is largely balanced by the num -
ber of electrons which can be captured in the convers e
process . As an approximate estimate, we may thus writ e

\ )4~aåzl'z2
v`-°

(4 .4 .3)
8

QC N

corresponding to (4 .3.5) by an interchange of zl and z 2 .
In heavy stopping materials, the capture and loss pro -

cesses are, of course, very difficult to follow in detail, but
it is evident that there will be a considerable probability
of an exchange of electrons between the ion and the stoppin g
atom in any collision where the ion penetrates the atomic
region containing electrons of orbital velocities comparabl e
with v. As follows from considerations analogous to thos e
implied in (3 .5.1), the radial extension of the ion will b e
approximately given b y

2
* vs v 0al

 

'., aQ
z i

,s-' ao zl

 

v
(4 .4 .4)

where we have put vs - 4' and introduced zl from (4 .4 .1) . A
similar expression will hold for the size of the atomic regio n
active in the exchange processes . For vi and a e which, in th e
case considered, will be of the same order of magnitude, the
symmetrical expression

2
6 j . 6~ ^ ?£ a2 (zi' - Î- z2') 2 (-v °v J

therefore suggests itself as a rough estimate .

(4 .4 .5 )
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Comparing formula (4 .4.5) with (4.4.2) and (4.4.3) ,
we notice the far smaller dependence on z 2 and v of the
cross-sections in heavy as compared with light materials . In

a
particular will the ratio - which, in the former case, is

always of the order of unity, in the latter case decreas e
rapidly with v and will, especially in hydrogen (z 2 = 1) ,
be very small for v » vo . For such velocities we may ,
therefore, as already mentioned, expect the average charg e
of the ion to be somewhat larger in the lightest than i n
heavier materials, although it will, of course, always remai n
of the same order of magnitude as the estimate (4 .4.1) .

For the discussion in the next chapter, of the stoppin g
effect of fission fragments, it is moreover essential to examine
to what extent such heavy ions may be regarded as poin t
charges. To this purpose, we note in the first place that ,
for a collision between a free electron and a high speed io n
of charge number (4 .4 .1), we have from (3 .2.3)

§ 4 .4 .

x= 2 ziU0 2 zllv (4 .4 .6)

which, for fission fragments, is essentially larger than unity .
The collisions can, therefore, with high approximation b e
treated on classical mechanics and, according to the con -
siderations in Chapter 1, the collision diameter b, corre -
sponding to encounters between the charges zi e and -s ,
will be a suitable measure for the minimum impact para -
meters contributing essentially to the stopping effects . By a
comparison between (1 .1 .4) and (4.4.4) it is seen that
b -- 2 at , and the internal structure of the ion should, there-
fore, have only a very small influence .

While a survey of the properties and behaviour of the
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fission fragments can be obtained by means of simpl e
arguments, if v is large compared with vo, the problem be -
comes far more intricate for velocities approaching vo . Not
only will all estimates of z become very uncertain whe n
the particles tend to be neutral, but it will no longer be
justified to regard the system as a point charge in elec-
tronic collisions . As we shall see, however, the great latitud e
in estimates of electronic stopping is rendered relatively un -
important by the preponderant influence of nuclear collision s
on the stopping effect towards the end of the range of suc h
heavy particles .
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CHAPTER 5 .

Range Velocity Relations .
§ 5.1 . General Aspects of the Problem .

As is well known, range measurements often offer a
convenient means of determining the initial velocity of high
speed atomic particles . In fact, in many cases, the majority
of the particles will be gradually stopped without suffering
greater deflections and, therefore, a beam of uniform velo-
city reaches a fairly well defined distance from the source .
Just in this respect, there is an essential difference betwee n
the behaviour of electrons and that of heavier particles . While ,
in the latter case, the accumulative effect of individual smalle r
collisions will produce a stopping phenomenon resembling
that of a body moving through a viscous medium, we mee t
in the former case, due to the frequent large scattering, with
a phenomenon more analogous to the absorption of a bea m
of electromagnetic radiation which during its propagation i s
attenuated according to an exponential law.

Such typical absorption effects are especially pronounce d
in the case of high speed electrons penetrating through heavy
substances, where the large angle deflections will occur with
great probability even within sections of the path in which
the mean energy loss constitutes only a small fraction o f
the total kinetic energy . In fact, the stopping power will for
fast ß-rays be roughly proportional to the atomic number
z$ of the substance, while the probability of nuclear
scattering within a given section of the range will be pro-

§ 5 .1 .
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portional to z2 . Thus, a simple estimate (Bonn 1915) shows
that, for medium values of z 2 , the probability of a beam o f
electrons being dispersed before the particles have lost th e
major part of their kinetic energy is of the order of unity,
in agreement with experiments according to which, in th e
lightest substances, /3-rays possess a rather well-define d
range while, in heavy substances, the intensity of the beam
falls off nearly exponentially . The problem has been con -
sidered more closely by ,BOTHE (1923) on the basis of an
examination of the compound scattering .

The main results may be directly illustrated by mean s
of the analysis given in Chapters 2 and 3 . Thus, from
formula (2.5 .10) for the compound scattering, one gets, by
introducing the most probable energy loss in electronic col-
lisions, determining for the stopping effect ,

( w*) L = z2
I

L

vLl

E

*E

 

(5.1 .1 )
F

where L,, and L E stand for the logarithmic terms in the
nuclear and the electronic stopping formulae (2 .4 .6) and
(3 .4 .7), respectively . Since LE is comparable with z 2 L; ,
we see that, for high values of z 2 , we may have ?Y* ,ti 1
even for 4FE « E, while it follows from a closer eva-
luation of the logarithmic terms that, only in the lightes t
substances, 1'* will remain small for dÉ E ti E .

In case of fast heavy particles, the scattering effect s
will, in general, be of only minor importance and we have ,
therefore, to do with a well-defined range, except for a
certain straggling due to the statistical fluctuations in th e
accumulative stopping effects . Assuming that u « c, we get
from the formulae in Chapters 2 and 3, with a similar
notation as in (5 .1 .1),
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where zi in the first term represents the effective charg e
number of the particle in electronic collisions which, especi-
ally for highly charged particles, may be essentially smalle r
than z 1 on account of electron capture .

Still, due to the appearance of u in the denominator,
the first term in (5 .1 .2) will in general be large compare d
with the second for velocities exceeding vo . For smalle r
velocities, the simple theory of electronic stopping effect s
ceases to be valid, but, due to the fact that in this regio n
nuclear stopping plays the essential part especially for larg e
values of z 1 , we may often to a first approximation neglec t
the first term entirely. The value of v for which nuclear
stopping begins to be decisive will, however, due to th e
presence of the factor zi in the second term in (5 .1 .2), be
considerably higher for particles like fission fragments tha n
for protons or a-rays .

While for a-rays the influence of nuclear collisions ,
which is manifested in the irregularity of cloud- chambe r
tracks in the immediate neighbourhood of their end, is onl y
of little significance in range determinations, nuclear stop -
ping will, in the case of fission fragments, be of importanc e
over quite an appreciable fraction of the range, as appear s
from the marked curvature of the tracks (cf. p . 62) . For the
closer treatment of the range problem it is essential that the
second term in (5 .1 .2) retains its validity down to velocitie s
considerably lower than vo . Still, as discussed in § 2 .3, an
expression of the type (2 .3 .9) must be applied in the cas e
of very slow particles .

The main purpose of the following discussion will be t o

§ 5 .1 .



§ 5 .2.

 

The Penetration of Atomic Particles through Matter .

 

125

examine the characteristics of the range velocity relation s
for particles of different charge and velocity. In § 5 .2, we
shall briefly review the situation for particles like protons
or a-rays, where capture phenomena are of only mino r
importance . In § 5 .3, the problem of highly charged par-
ticles will be considered, with special reference to the pro-
perties of fission fragments . Finally, in § 5 .4 we shall briefly
discuss the stopping problems for particles of smaller initial
velocity like recoil atoms in nuclear disintegrations .

§ 5.2. Range Relations for High Speed
Light Nuclei .

Due to its practical importance in nuclear researches ,
the problem of range velocity relations for particles lik e
protons and a-rays has been much discussed and has espe-
cially been thoroughly treated by LIVINGSTON and BETHE

(1937) who, on the basis of BETHE' S theory, have developed
semi-empirical formulae for the dependence of the stoppin g
power on velocity for different substances . We shall, there -
fore, confine ourselves to a survey of some of the mor e
principal results by means of the considerations in Chapter s
2 and 3 .

For the major part of the range, we can here put z = z l
and also neglect nuclear stopping effects . The decisive poin t
is, thus, the dependence of L E on z 2 and v . In very light
substances and for v »» vo, we have approximately LE

proportional to z2 and only slowly varying with v . Putting
LE = z2L, we get from (5 .1 .2), by introducing the quantities
ao and vo from (2 .1 .1) and (2 .1 .5),
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4
Vo

dR =
2xNaåmziz 2 ~3 L .

1

For hydrogen, (3 .4.3) gives, since x < 1, the values L = 12 .0

and 9.2 for v = 10 vo and 5 vo, while the empirical values
are L = 11 .7 and 8.9, respectively . The small differenc e
which is insignificant to our purpose is due to the circum-
stance that the value of u3 determining for ns in (3.4.3)
has to be chosen slightly greater than vo, as follows fro m
the detailed calculations of BETHE . From (5 .2.1), the range
may be obtained by simple integration, givin g

 1 m 1 1
C v ~4

1
R=  J

8 nNaô P zi z 2 v o L

where T. is a suitable mean value of L which, for initial
velocities large compared with vo, is only little smaller than
the value of L at the beginning of the range . Thus, for
v = 10 vo, the empirical value to be introduced into (5 .2 .2)
for hydrogen is L = 9.6 .

In heavier substances containing electrons with orbital
velocities greater than v, we find, according to (3 .5.5) and
(3 .5 .7), since x

 

1, a value of Ls proportional to v . Putting

LE = f v , we get from (5 .1 .2) the range velocity relation
vo

 1 m1 1 (v 3 1
R

 

6 n Na~ f~ zi v o~ f

 

(5 .2 .3)

which, as regards dependence on v, accounts for the em-
pirical rule of GEIGER . The value of f to be used should,
according to the considerations in § 3 .5, for large values o f
z 2 , approach 8z2' . For xenon this would give f ' 30 ,
which is close to the empirical value .

(5 .2 .1 )

(5 .2 .2)
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Also the phenomenon of range straggling is, for particle s
like a-rays, practically uninfluenced by nuclear collisions ,
but here it is necessary to consider somewhat more closely
the statistical problems involved. In fact, a comparison of
the expressions (2 .3 .7) and (3 .4.5) for the mean squar e
deviation of the energy losses over a given section of th e
range shows that 52,2, and S2f are of the same order o f
magnitude . While, however, the distribution of 4,E is of a
Gaussian type for any not too small part of thé range, the
distribution of d„E will, in general, as follows from th e
considerations in § 2 .4, be of an essentially different type ,
involving major fluctuations in the energy losses only for
a small fraction of the particles .

As regards 4,E, we have a statistical distribution of th e
type (2 .4 .1) for which we may conveniently writ e

(A„E) =

 

R.

 

(5 .2.4)

In order to estimate the corresponding range straggling, we
may proceed in the following manner (cf . BOHR 1915). The
fluctuation in d f E will give rise to a Gaussian distribution
of the values of AR corresponding to a fixed amount . of
energy loss AE with a mean square deviation

S2
É

(d R) = S22
(4 E)(4 E)2 = P AE(-4

R 1-3 (5 .2 .5 )

and, for the resulting straggling in total range, we have thu s

E

52,(R) -- PE
(dR~_3

dE .

 

(5 .2.6)

0

Since P~ for light stopping materials, according to (3 .4.5) ,
is independent of v and, for heavier substances, according
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to (3.5.8), is roughly proportional to v, it follows fro m
(5.2 .6) that, for range velocity relations like (5 .2.2) or
(5.2 .3), by far the greatest contribution to the straggling i s
due to the high velocity part of the range .

Evaluating the integral we get, with the above notation ,

§ 5 .2 .

S2 f (R)

 

,u
R2

= 4 m1 L (5 .2 .7 )

in the case of light substances where the value of L corre-
sponds with high approximation to the initial velocity . For
a-particles in hydrogen, we shall thus expect a relative rang e

straggling ~fRR) of a little less than 1 °/o . For heavy sub-

stances, we get by a similar calculation, making use of th e
comprehensive formulae in § 3 .5, holding for not too fast
particles,

9 2 (R)
_ 3 ,u

R2

 

4m '1
(5 .2 .8)

which corresponds to a relative range straggling for a-rays
of about 1 °/o, independent of stopping material and initia l
velocity .

In order to estimate the contribution of nuclear collision s
to the straggling, we may proceed in a way quite analogou s
to the considerations in § 2 .4 of the distribution of the energ y
losses d„E. Let us, thus, by S R* denote a variation in th e
range due to a single collision and chosen in such a way
that the mean number of collisions during the whole rang e
giving rise to a loss of range larger than 5R* is just equa l
to one. The corresponding energy loss T* will, of course ,
be different for the different parts of the range and will b e
given by
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T* = 8R* i dR J .

 

(5 .2.9)

From the definition of åR* we have, from (2 .2.5), since
T* <K Tm over practically the whole range ,

 

sR

 

sE ` 2

1 = NB T* dR = 8R~ NB~dR ) dE . (5 .2 .10)

 

0

 

0

 

\

 

/

For the fluctuations in range due to individual energy losses
smaller than T*, which give rise to an approximate Gaussia n
distribution, we have from an expression analogous t o
(5 .2 .6), by introducing Pÿ = NB„T* (cf. (2 .4 .7) and (5 .2 .4)) ,

E

.Q* (R) = åR* = SNBvdE .

 

(5 .2.11 )
0

where we have made use of (5 .2 .9) and (5 .2 .10) .
Using the range velocity relations for fast a-particles, we

find from (5.2 .11), by means of (2 .2 .3) ,

.Q* (R)

 

z2 ,u
(5 .2 .12)R

 

L m 2

in the case of light stopping materials and

(5 .2 .13)
.Q

v
(R) 3

 

~

 

°!e (vo
)16 m2

z2

 

v
__

R

for heavy substances. From a comparison with (5 .2.7) and
(5 .2 .8) it is thus seen that 12*(R) amounts to only a fe w
per cent of S2,(R) even for the highest values of z 2 . Looking
apart from the rare cases in which an a-particle suffers a
collision with a nucleus so violent that it loses a consider-

Vidensk. Selsk., Matli .-fys . Medd . XVIII, 6 .
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able part of its energy, the contribution of nuclear collisions
to the range straggling for fast a-particles may, therefore, b e
entirely neglected .

Experimental investigations of the straggling of fast pro -
tons or a-rays meet in general with difficulties in securin g
sufficiently well defined conditions, and the values obtained
are, therefore, likely to be too high . Cloud-chamber studies
by RAYTON and WILKINS (1937) of the straggling of fas t
a-rays have, however, given values only slightly greater
than was to be expected from (5 .2 .7) and (5.2 .8) . More re-
cently BØGGILD (1948), by a study of cloud-chamber track s
of protons emitted in nuclear reactions, has obtained re -
sults which agree closely with the theoretical formulae .
A further interesting test of the straggling theory is pro-
vided by the measurements of the range of mesons in
photographic emulsions (LATTES, OCCIIIALINI and POWEL L

1947) which, for particles with a mass of about 200 ,u and
energies of about 4 MeV, give a relative range straggling o f
about 4 °/o . Since, in this case, L will be about 18 for hydro -

gen, formula (5 .2.7) gives R = 3.3 °f 0 , while, for heavier

substances, formula (5 .2.8) gives about 6 0/ 0 . Considering
that the emulsion consists of a mixture of light and heav y
materials, the agreement must be regarded as satisfactory .

In the above estimates of range and straggling of ligh t
nuclear particles, it is assumed that electronic collisions ar e
determining for the stopping over practically the whole range .
While this is the case for particles with v »» v° , the situatio n
becomes, of course, essentially different if the initial velocit y
approaches v ° . Under such circumstances, the very last par t
of the range, where nuclear collisions become effective, ma y
constitute a not inconsiderable part of the whole range an d

§ 5 .2 .
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may, in particular, be of significance for the range straggling .
In fact, the expression for the relative straggling over thi s
last part of the range will, instead of the ratio between th e
masses of electron and atomic nuclei, contain only ratios be-
tween nuclear masses and may, therefore, be of the orde r
of unity. An indication that the relative straggling begin s
to increase considerably for velocities a few times larger
than vo was obtained by BOGGIER (1948) who, by measure-
ments of cloud-chamber tracks of light nuclear fragment s
emitted in slow neutron reactions, found a straggling essen-
tially greater than was to be expected for the effect of
electronic collisions according to formulae like (5 .2.7) or
(5 .2 .8) .

§ 5.3. Range Relations for Fast Heavy Ions .
The penetration phenomena for highly charged particle s

like fission fragments differ in several respects markedl y
from those exhibited by protons and a-rays . Thus, the
measurements of the velocity of fission fragments along th e
range by means of branch statistics, as discussed in § 2.2 ,

show (BØGGILD, BROSTRØM and LAURITSEN 1940) that, over

the initial part of the range, the rate of velocity loss is
approximately constant in contrast to the range velocity
relations for a-rays, referred to in § 5 .2, which are charac-
terized by a rapid increase of dv/dR with decreasing velo-
city . Also measurements of the ionization of fission frag-
ments along the path (JENTSCHI{E and PRANKL 1939 and,

especially, LASSEN 1946 a and 1948) show a fall in ionizatio n

over the initial part of the range which contrasts markedly

with the steep rise in the ionizing power of a-rays wit h

decreasing velocity .
9*
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A theoretical discussion of the penetration of fissio n
fragments has been given by several authors (BECK an d
HAVAS (1939), BOHR (1940 and 1941), LAMB (1940 an d
1941), KNIPP and TELLER (1941), and BRUNINGS, KNIP P
and TELLER (1941)) . The characteristic difference in the
range velocity curves for fission fragments and a-rays is ,
in the fir st instance, determined by the influence of electro n
capture on the effective charge zi . While, for the end part
of the range, nuclear collisions are to a large extent re-
sponsible for the stopping effect, the second term in (5 .1 .2)
is, in the initial part of the range, negligible compare d
with the first and the variation of z along this part o f
the range may, therefore, be directly estimated from the
measurements of dv/dR. In heavier substances where LE i s
roughly proportional to v, it follows thus from the appro-
ximate constancy of dv/dR that zi is closely proportional t o
v, in accordance with the simple estimate (4 .4.1) . For a
more accurate determination of zi it is, however, essential t o
consider the dependence of LE on the quantity which, i n
contrast to the case of a-rays where x 1, is here large com-
pared with unity, as follows from the expression (4 .4 .6)
which gives x ,- 8, approximately independently of velocity ,
if only v» vo .

By means of the expressions for L E contained in (3 .4 .3)
and (3.5 .7) referring to light and heavy substances, respec-
tively, and by using the ionization measurements of LASSEN ,

one finds initial values of zl which for all stopping material s
are nearly equal and which, within the uncertainty of the ex-
perimental and theoretical estimates, coincide with the direc t
determinations (cf. § 4.4) of the total charge of the frag-
ments . In accordance with these experiments, one also find s
a variation of zl' with v which, for the heavy fragment group,
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is closely linear while, for the lighter group, it varies some -
what less rapidly with v in the high velocity region . This
latter feature is clearly evident from the ionization curv e
obtained by LASSEN which, for the lighter fragments in con-
trast to the heavier fragments, for decreasing velocities ex-
hibits an increasing slope until it gradually takes a mor e
linear run .

As mentioned in § 5 .1, an estimate of the total range a s
a function of the initial velocity is a more complicated
problem for fission fragments than for a-rays due to the fact
that the part of the range corresponding to v vo in the
former case, in contrast to the latter, constitutes a consider -
able part of the whole range . On account of the approximat e
linearity of the range velocity curve for v > vo it is, how-
ever, convenient to introduce the quantity Rex defined by a
simple extrapolation of this part of the curve to v = O .

An expression for Rex may be obtained from (5 .1 .2) by
introducing the estimates for zi and L e discussed in pre -
ceding chapters . Thus, in the approximation in which w e
can apply (4 .4 .1) for z and (3 .5 .7) for Le , we get, for
the range of fragments with mass number A l and with
initial charge zT, the simple expression

R

ex 3A ~ 29•Ra

 

(z t
(5 .3 .1 )

where, in order to eliminate as far as possible the latitud e
in the estimate of L e , we have compared Rex with the rang e
Ra of an a-particle (x < 1) with the same initial velocity .
In (5 .3 .1) it is assumed that x, as ind-icated by (4 .4 .6), is
constant along the range and that Le , in accordance with
(3 .5 .5), is proportional to v . The value of the quantity
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g,, representing the reduction in L E for fission fragments
as compared with a-rays, is, for x - 8, close to 2 .5 .

The approximation involved in (5 .3 .1) should be well
satisfied for the heavy fragment group in substances o f
not too low atomic number, where it is also found to be
in close agreement with experimental data . In the case o f
the light fragment group where zl varies somewhat more
slowly than corresponding to (4 .4.1) in the first part of the
range, we must expect Rex to be somewhat smaller than
would correspond to (5.3.1), as is also confirmed by the
experiments . In the case of stopping material of low atomi c
number, the ratio of Rex to R a must be expected in ge-
neral to depend somewhat differently on the initial ve-
locity since, in contrast to the case of high speed a-ray s
where L E , according to (3 .4.3), varies only slowly with v ,
the large values of x and the , relatively small values of v for
fission fragments imply that the logarithms vary mor e
rapidly with velocity . By introducing in (5 .1 .2) the value
(3.4 .3) for L E one obtains, however, by integration, value s
for Rex in approximate agreement with experimental dat a
(cf. LASSEN 1948) .

The features connected with the appearance of x in
the expressions for L E also account, to a large extent ,
for the observed variations of the stopping power of fission
fragments relative to a-rays in different materials . Thus,
assuming that zi for given zl and v, to a first approximation ,
is the same in all substances, we shall from formulae (3 .4 .3)
and (3 .5 .7) for fission fragments with v ti 6vo (light group )
expect a ratio between the stopping power of a He and a
H atom of about 1 .5, and between an A and a He atom
of about 4.2, while for a-rays of similar velocity the corre-
sponding ratios are 1 .7 and 5.2, respectively. This agrees
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approximately with the measurements of LASSEN (1948)
who finds that, for the lighter group of fission fragments ,
in the first part of the range the ratios in question are 1 .35
and 4.2, respectively . While the latter value coincides rather
closely with the theoretical estimate,, the ratio between th e
stopping powers of He and H is somewhat smaller than
was to be expected if ti' is equal for the two substances .
Although the evidence regarding this point is uncertain, i t
may be an indication that the number of captured elec-
trons is slightly smaller in H than in other substances, a s
might also be expected from the considerations in § 4 .4 .

When the fission fragments have been slowed down to
velocities comparable with or smaller than vo, the estimate
(4.4.1) for zi is no longer valid and the effective charge i n
electronic collisions will decrease still more rapidly . As a
consequence, the stopping effect would become very smal l
and, due to the large energy still possessed by the fragments ,
a long tail in the range velocity curve would result, if th e
increasing influence of nuclear collisions did not counteract
such a course . Looking, as a first approximation, apart fro m
electronic collisions for v < vo, the velocity loss in this regio n
will be determined by the second term in (5 .1 .2) which
holds down to velocities considerably below vo . By inte-
gration, one obtains for the residual range Ro, correspond-
ing to a velocity v,

1

 

722 1 7212
4

1
R° 87LN 22 84

v L
v

where L,, is a mean value of the logarithmic term which
is close to the value of L,,, corresponding to the velocity v .

It should be noted that formula (5 .3 .2) does not hold
for v «« vo since, as mentioned in § 2 .3, it is a condition

(5.3 .2)
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for the validity of the last term in (5 .1 .2) that the quantity
C is small compared with unity. For fission fragments, th e
expression (2 .1 .7) gives C ^, i f Io for v vo and C - 1 for
v = 1 /3 vo, approximately independently of the stoppin g
material . For still smaller velocities, the nuclear stoppin g
will be given by (2 .3.9) but, provided v ti vo, the resultin g
corrections to Ro will be only negligible . For particles
of smaller initial velocities, however, we get, as will b e
more closely discussed in the next paragraph, a rang e
velocity relation of essentially different type .

In contrast to the range formulae referring to electroni c
collisions, formula (5 .3.2) depends explicitly on m 2 , and
the relative importance of nuclear collisions may, therefore ,
be estimated directly from a comparison between the range s
of fission fragments in hydrogen and deuterium . According
to the measurements of BØGGILD, ARRØE and SIGURGEIRSSO N

(1947), the range in D is, in fact, larger than that in H by
about 7 mm at N .T.P. Now, from the expression (5 .3 .2) for
Ro, we find that this difference between D and H corresponds
closely to v = vo . To a first approximation we may, there -
fore, assume that, for velocities larger and smaller than vo ,

the main stopping effect is due to electronic and nuclea r
collisions, respectively . This result also fits in quite well with
the measurements of total ranges in various substances ,
which are approximately accounted for (cf. LASSEN 1948) by
the sum of Rex and Ro, if v in (5.3.2) is put equal to vo .

In order to estimate the range straggling for fission frag-
ments, we may use similar considerations as in § 5 .2, As
regards the contribution from electronic collisions, we thu s
obtain from (5 .2.6), by means of (5 .3.1), expressions fo r
12 e (Rex)/(Rex ) quite analogous to (5 .2.7) and (5 .2.8), ex-
cept for slightly altered numerical constants arising from

§ 5 .3 .
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different range velocity relations . Due to the large mass m l
of the fission fragments we, therefore, get values for th e
relative straggling of the order of 0 .1 °/ 0 which, as we shal l
see, is negligible in comparison with the contribution o f
nuclear collisions to the straggling .

In estimating the latter contribution, it is important, like
in § 5 .2, to consider first the problem of the type of statistical
distribution law governing 4„E . According to the consider-
ations in § 2 .4, it follows that, in light substances wher e
m l » m 2 , we have to do with a simple Gaussian distri-
bution of 4„E, at any rate in that part of the range where
nuclear collisions have any considerable influence on th e
stopping. In such cases, we get, in analogy to (5 .2.6), since
P,, given by (2 .3.7) is independent of v ,

-(2,2 (R) =

 

U

PT, 2 \dR

 

u2dv .
mt

0

Now, for velocities large compared with v 0 , where dv/dR
for fission fragments is approximately constant, the inte -
grant varies as v -2 while, for v < v 0 where d v/dR is roughly
proportional to the integrant contains a factor v 7. It
follows, therefore, that the straggling essentially , depends on
the velocity region where v ti v 0 . In order to obtain a simple
estimate of .Q; (R), we may divide the integral into two part s
corresponding to velocities larger and smaller than v 0 ,
respectively, and replace d v/dR in the first part by (d v/dR)E
and in the second part by (dv/dR),,, given by the first and
second terms in (5 .1 .2), respectively . By an evaluation o f
the integral, one finds that the second term is preponderant
and, in analogy to (5 .2 .7), one gets, by introducing th e
value of R 0 given by (5 .3 .2) for v = v0 ,

(5 .3 .3)
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S22, (R)

 

m2 1
= 4 -- ,

 

(5 .3 .4)
R2°

 

m l Ly

where L„ represents the logarithmic term in the nuclear
stopping formula for v ti v° . For hydrogen, this formula
corresponds to a relative straggling in the last part of the
range of about 10 0 / 0 , equivalent to some three per cen t
of the total range, of which R ° constitutes about a third .
For heavier substances still greater straggling is to be ex-
pectedl) but, when m2 becomes comparable with m 1 , spe-
cial considerations must be applied since the statistica l
distribution of the ranges will no longer be of a simpl e
Gaussian type .

§ 5.4. Range Relations for Atoms of Smal l
Initial Velocity .

For particles with velocities small compared with v ° , we
shall expect essentially different penetration phenomen a
than for high speed particles . Except for the case of slow
electrons where peculiar quantum-mechanical resonanc e
effects in atomic fields may occur, we have in this velocity
region essentially to do with nuclear collision processe s

1) Note added in proof : Recently, S . KATCOFF, J . A . MISKE L
and C. W. STANLEY (Phys . Rev. 74, 631, 1948 ).have succeeded, by
means of radioactive chemical analysis, in studying separately th e
stopping in air of individual isotopes occurring among the fission
fragments . The ranges are found to vary with charge, mass, an d
initial energy in approximate agreement with the simple theor y
outlined above . Moreover, the straggling, which in earlier investi-
gations could not be separated from the variation in range of
the different isotopes within each of the two easily distinguishable
groups, was found to be about 5 °Jo for all the fragments, a result
which also fits in with the theoretical expectations .
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which to a large extent can be accounted for by means of
simple mechanical considerations (cf. § 2 .1) . Since the quan-
tity C will be comparable with or larger than unity, we mee t
with a practically uniform scattering in relative coordinate s
and, as already discussed in § 2 .4 and § 2 .5, we shall, there -
fore, expect typical diffusion effects, unless ml »» m2 . Only
in such cases, of which we have characteristic examples in
the stopping, in not too heavy substances, of recoil atom s
from radioactive disintegrations, we shall thus have to d o
with a well defined range .

In natural a-decay, the recoil atoms with z l ,., 90 will
have initial velocities of about 1/6 va, corresponding to ti 5 ,
practically independently of z2 . Here, we have a typical
case of excessive screening and, as discussed in § 1 .5, the
effective cross-section a will, for C j 1, be of the sam e
order as nat . Moreover, for not too large values of the
effective part of the field will be roughly of the inverse cub e
type with a value of a approximately given by (1 .5 .11) . By
means of (2.1 .2) and (2 .1 .7), the stopping formula (2 .3 .9)
thus gives, for m l )» m 2 i

dE nNao zdR

leading to a range velocity relation

1
R  ,  j )

 

(5 .4 .2)
2 a Naô zt!s z2 ,u ` o

where we have introduced ao and vo from (2 .1 .1) and (2 .1 .5) .
For recoil particles with z l ti 90 and corresponding t o

a-energies of 6 MeV, expression (5 .4 .2) gives a range in
hydrogen at N.T .P. of about 0 .4 mm, in satisfactory agree -

(5 .4 .1)
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ment with the measurements which are somewhat conflictin g
but, on the average, give a range of about 1/2 mm . In water
vapour at N .T.P., JOLIOT (1934) finds a range of abou t
0 .08 mm, indicating that the stopping power of oxygen shoul d
be about 8 times larger than that of hydrogen, in accord-
ance with formula (5 .4 .1) .

As regards the range straggling, we get from (2 .3.10)
and (5 .2 .6), since, for ml i% m2 , we have an approximately
Gaussian distribution of the energy losses,

§ 5 .4 .

.Q 2 (R)

 

4 m 2
R2

 

3= m1 ' (5 .4 .3 )

giving values for the relative range straggling in hydroge n
of about 10 °/o . In oxygen, the expected value should b e
about 25 °/ 0 , which is of the same order of magnitude a s
the straggling observed by JOLIOT in water vapour .

For still smaller velocities where C becomes very larg e
compared with unity, formula (5 .4 .2) will no longer hold
and, as mentioned in § 2 .3, the effective cross-section will
tend to coincide with the gas-kinetic cross-section, corre-
sponding to a rate of energy loss proportional to the energ y
of the penetrating particle . For a-recoils, this circumstanc e
will only affect the velocity range relation at the extrem e
end of the range, but in fl-recoil, where the initial velocity

is of the order of 1000 vo, it will apply to the entire range .

This problem has been more closely investigated by JACOB-

SEN (1928), who has also taken the effect of the thermal
velocities of the gas atoms into consideration when estimating
the stopping of the recoil atoms. Expëriments on thes e
phenomena are very difficult, but are, as shown by JACOB-
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SEN, in agreement with theoretical expectations within th e
uncertainty of the measurements .

Evidence of the characteristic difference in the stopping
mechanism for particles with velocities large and small
compared with vo is also afforded by ionization measure-
ments . While, as mentioned in § 3 .4, for high speed particle s
where electronic collisions are determining for the stopping,
the energy expenditure per ion is largely independent o f
charge and velocity of the ionizing particle, the situatio n
must be expected to be essentially different if a considerabl e
part of or even practically the whole of the energy is trans-
ferred directly to the atomic nuclei, as is the case for the en d
part of the range of fission fragments and for the whole
range of the recoil atoms . Also here, the experiments sho w
that the energy loss is accompanied by an intense ionizatio n
which may be due to the fact that neither the primary colli-
sions between the electron systems nor the secondary collisio n
processes between the struck atoms and other atoms in th e
stopping material are strictly adiabatic . It is significant, how-
ever, that measurements of the energy expenditure per ion
for a-recoil atoms (L . WERTENSTEIN 1913 and, especially, B .
MADSEN 1945) give values which are several times large r
than for ,a-rays and which increase rapidly with decreasing
energy. For velocities of about 1/20 vo, the curve obtained
by MADSEN for the dependence on initial energy of the total
number of ions produced by the recoil particle indicates an
almost vanishing ionization corresponding to atomic colli-
sions in which the electronic structures react in a practi-
cally adiabatic manner .
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